期刊文献+

NOR logic function of a bendable combination of tunneling field-effect transistors with silicon nanowire channels 被引量:1

NOR logic function of a bendable combination of tunneling field-effect transistors with silicon nanowire channels
原文传递
导出
摘要 在这研究,我们与不均匀地做的 p <sup>+</sup>-i-n<sup>+</sup> 硅 nanowire (SiNW ) 建议通道地效果晶体管(TFET ) 的新奇联合可弯曲的底层上的隧道。在平行的二 n 隧道 SiNW-TFETs (NWTFET ) 和在系列的二 p 隧道 NWTFET 的联合是操作一二输入也不逻辑门。有 n 隧道和 p 隧道的部件 NWTFET 展出 69 和 53 mV  的次于最低限度的秋千(SS ) In this study, we propose a novel combination of tunneling field-effect transistors (TFETs) with asymmetrically doped p^+-i-n^+ silicon nanowire (SiNW) channels on a bendable substrate. The combination of two n-channel SiNW-TFETs (NWTFETs) in parallel and two p-channel NWTFETs in series operates as a two-input NOR logic gate. The component NWTFETs with the n- and p-channels exhibit subthreshold swings (SSs) of 69 and 53 mV·dec^-1, respectively, and the on/off current ratios are -106. The NOR logic operation is sustainable and reproducible for up to 1,000 bending cycles with a narrow transition width of -0.26 V. The mechanical bendability of the bendable NWTFETs shows that they are stable and have good fatigue properties. To the best of our knowledge, this is the first study on the electrical and mechanical characteristics of a bendable NOR logic gate composed of NWTFETs.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第2期499-506,共8页 纳米研究(英文版)
关键词 场效应晶体管 硅纳米线 逻辑功能 渠道 隧道 ets系列 抗疲劳性能 可弯曲 silicon nanowire array,field-effect transistor,tunneling,NOR logic gate,bendable substrate
  • 相关文献

参考文献21

  • 1Zhang, Q.; Zhao, W.; Seabaugh, A. Low-subthreshold-swing tunnel transistors. 1EEE Electron Device Lett. 2006, 27, 297-300.
  • 2Mayer, F.; Le Royer, C.; Damlencourt, J. F.; Romanjek, K.; Andrieu, F.; Tabone, C.; Previtali, B.; Deleonibus, S. Impact of SOl, Si1-x xGexOI and GeOI substrates on CMOS compatible tunnel FET performance. In IEEE International Electron Devices Meeting, IEDM 2008, San Francisco, CA, 2008, pp. 1-5.
  • 3Khatami, Y.; Banerjee, K. Steep subthreshold slope n- and p-type tunnel-FEY devices for low-power and energy- efficient digital circuits. IEEE Trans. Electron Devices 2009, 56, 2752-2761.
  • 4Ionescu, A. M.; Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011, 479, 329-337.
  • 5Appenzeller, J.; Lin, Y. M.; Knoch, J.; Chen, Z. H.; Avouris, P. Comparing carbon nanotube transistors--The ideal choice: A novel tunneling device design. IEEE Trans. Electron Devices 2005, 52, 2568-2576.
  • 6Zhang, Q.; Fang, T.; Xing, H. L.; Seabaugh, A.; Jena, D. Graphene nanoribbon tunnel transistors. IEEE Electron Device Lett. 2008, 29, 1344-1346.
  • 7Le, S, T.; Jannaty, P,; Luo, X.; Zaslavsky, A.; Perea, D. E.; Dayeh, S. A.; Picraux, S. T. Axial SiGe heteronanowire tunneling field-effect transistors. Nano Lett. 2012, 12, 5850-5855.
  • 8Lee, M.; Koo, J.; Chung, E. A.; Jeong, D. Y.; Koo, Y. S.; Kim, S. Silicon nanowire-based oanneling field-effect transistors on flexible plastic substrates. Nanotechnology 2009, 20, 455201.
  • 9Lee, M.; Jeon, Y.; Jung, J. C.; Koo, S. M.; Kim, S. Multiple silicon nanowire complementary tunnel transistors for ultralow-power flexible logic applications. Appl. Phys. Lett. 2012, 100, 253506.
  • 10Fahad, H. M.; Hussain, M. M. High-performance silicon nanotube tunneling FET for ultralow-power logic applications. IEEE Trans. Electron Devices 2013, 60, 1034-1039.

同被引文献9

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部