摘要
为分析悬臂梁易损部件在矩形脉冲激励下的振动响应,推导出悬臂梁在悬臂端处动态应力的近似解析解,得到最大应力与矩形脉冲峰值之间的关系,分析结果表明:在速度变化量一定时,最大应力随加速度脉冲幅值的增加而增加,但会无限逼近极限值。最后建立了易损件-质量主体在矩形脉冲激励下的有限元模型,并与解析解进行了对比,发现运用2阶振动模态即可得到精确的悬臂梁的应力响应,所取得的研究成果为具有悬臂梁式易损件在蜂窝纸板缓冲作用下的防护提供理论基础。
In order to analyze dynamic stress response of critical components with cantilever beam type under the excitation of a rectangular acceleration pulse,the relationship between the maximum stress at the cantilevered end and the rectangular acceleration pulse amplitude was deduced. The analysis results showed that the maximum stress increases with increase in the acceleration amplitude and approaches the limit value when the velocity change is constant. Finally,the analytical solution was verified with finite element results. It was shown that using only the first 2 orders of vibration modes can give a good estimation for the stress response of the components. The results provided a theoretical foundation for the protection of critical components with cantilever beam type when honeycomb paperboards were used as a cushioning material.
出处
《振动与冲击》
EI
CSCD
北大核心
2016年第5期191-195,共5页
Journal of Vibration and Shock
基金
国家自然科学基金(11402232)
宁波市自然科学基金(2015A610092)
宁波市自然科学基金(2015A610100
2013A610135)
浙江省自然科学基金(LY16A020004)
关键词
悬臂梁
易损件
有限元
加速度脉冲
cantilever beam
critical component
finite element model
acceleration pulse