期刊文献+

中文在线产品评论有用性评估实证研究——基于文本挖掘视角 被引量:2

Empirical Study on Assessing Chinese Online Product Reviews Helpfulness:A Text Mining Approach
下载PDF
导出
摘要 Web2.0时代,阅读在线产品评论已经成为人们购物前的一种习惯。然而,网络上的评论数量巨大且观点不一,消费者很难获取到真正对其有用的评论。本文从研究中文在线产品评论的有用性评估入手,结合中文在线评论的特点,构建了评论有用性评估特征体系。以二分类思想为中心,基于文本挖掘的基本流程,实现对中文产品评论的分类,并考察了评论内容各特征对分类效果的影响。结果表明,本文提出的评估方法能有效识别出有用评论,并且发现浅层句法特征在分类中的贡献度较高,语义特征与情感特征则会因语料类型的不同而有不同的分类贡献度。 In the web2.0 era, before going shopping, reading online product reviews has become a habit oi people. However, the number of reviews on the Internet is huge and opinions are different, consumers are difficult to gain helpful reviews. This paper studies on assessing the helpfulness of Chinese online product reviews.Combined with the characteristics of Chinese online reviews ,we construct a feature system about assessing reviews helpfulness. Taking the thought of binary classification as a center, based on the basic flow of text mining, to achieve the Chinese product reviews classification. And study on the degree of each feature of review content affecting the classification effect. The results show that the proposed evaluation method can effectively identify helpful reviews, and found shallow syntactic features has higher contribution in the classification. In addition, semantic features and sentiment features have different classification contribution on different type of corpus.
出处 《未来与发展》 2016年第3期37-43,共7页 Future and Development
关键词 在线产品评论 有用性 评估 文本挖掘 online product reviews, helpfulness, assessing, text mining
  • 相关文献

参考文献20

  • 1Dellarocas C. The digitization of word of mouth: Promise and challenges of online feedback mechanisms [J]. Management science, 2003, 49 (10): 1407--1424.
  • 2Mudambi S.M,Schuff D.What makes a helpful online review? A study of customer reviews on amazon.corn [J].MIS Quarterly,2010,34 (1):185- 200.
  • 3彭岚,周启海,邱江涛.消费者在线评论有用性影响因素模型研究[J].计算机科学,2011,38(8):205-207. 被引量:54
  • 4Jindal N, Liu B. Analyzing and Detecting l~eview Spam [C]//Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on. IEEE, 2007:547--552.
  • 5Cao Y, Lin Product ILeview S 334--342 C Y, et al. Low-Quality Detection in Opinion tion [C]// EMNLP--CoNLL. 2007:.
  • 6Kim S M, Pantel P, Chklovski T, et al. Automatically assessing review helpfulness[C]// Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Linguistics, Association for Computational 2006: 423--430.
  • 7Weimer M,Gurevych I.Predicting the perceived quality of web forum posts [C]// Proceeding of R_ANLP 2007 Bororets,Bulgaria: Publlication Post of Subjectivity,2007.
  • 8Hu N, Liu L, Zhang J J. Do Online Reviews Affect Product Sales? The Role of Reviewer Characteristics and Temporal Effects Science Electronic Publishing, 2008, 9 214. [l] .Social (3):201 --.
  • 9Lu Y, Tsaparas P, Ntoulas A, et al. Exploiting social context for review quality prediction[C]// Proceedings of the 19th international conference on World wide web. ACM, 2010: 691--700.
  • 10Chen C C, Tseng Y D. Quality evaluation of product reviews using an information quality framework [J].Decision Support Systems, 2011, 50(4): 755--768.

二级参考文献43

  • 1武晓春,黄萱菁,吴立德.基于语义分析的作者身份识别方法研究[J].中文信息学报,2006,20(6):61-68. 被引量:25
  • 2孙晓明,马少平.基于写作风格的作者识别[C]//中国中文信息学会第五届全国会员代表大会暨成立二十周年学术会议论文集.北京:清华大学出版社,2001.
  • 3Efron B, Thisted R. Estimating the Number of Unseen Species: How Many Words did Shakespeare Know? [ J ]. Biometrika, 1976, 63(3) :435 -447.
  • 4De Vel O, Anderson A, Corney M, et al. Mining E - mail Content for Author Identification Forensics [ J]. ACM S1GMOD Record, 2001,30(4) :55 -64.
  • 5Zheng R, Li J, Huang Z, et al. A Framework for Authorship Identi- fication of Online Messages: Writing - style Features and Classifi- cation Techniques[ J ]. Journal of the American Society for Informa- tion Science and Technology,2006,57 ( 3 ) : 378 - 393.
  • 6Abbasi A, Chen H. Identification and Comparison of Extremist - group Web Forum Messages Using Authorship Analysis [ J ]. IEEE Intelligent Systems,2005,20 ( 5 ) : 67 - 75.
  • 7Holmes D I,Forsyth R S. The Federalist Revisited:New Directions in Authorship Attribution [ J ]. Literary and Linguistic Computing, 1995,10(2) :111 - 127.
  • 8Juola P, Baayen H. A Controlled Corpus Experiment in Authorship Identification by Cross -entropy[ J]. Literary and Linguistic Com- puting,2005,20(S) :59 -67.
  • 9Abbasi A, Chen H. Writeprints:A Stylometric Approach to Identity -level Identification and Similarity Detection in Cyberspace [ J ]. ACM Transactions on Information Systems ,2008,26 (2) :1 -29.
  • 10Salton G, Buckley C. Term - weighting Approaches in Automatic Text Retrieval [ J ]. Information Processing and Management, 1988,24 (5) :513 -523.

共引文献63

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部