随机积分微分方程的依分布均方几乎自守解
摘要
随机积分微分方程在自然科学的若干领域如力学、电磁理论、生物科学等有着重要的应用.本文基于算子理论和随机分析知识,研究了带Poisson跳的随机积分微分方程几乎自守解的存在性,给出了依分布几乎自守解的存在的充分条件.
出处
《赤峰学院学报(自然科学版)》
2016年第6期9-14,共6页
Journal of Chifeng University(Natural Science Edition)
基金
安徽省自然科学基金(1308085QA14)
参考文献11
-
1C. Tudor. Almost periodic solutions of affine stochastic evolution equations [J]. Stochastics and Stochastics Reports, 1992,38(4):251-266.
-
2D. Applebaum. Ltvy Process and Stochastic Calculus [M]. Cambridge: Cambridge University Press, 2009.
-
3K. I. Sato. L6vy Processes and Infinite Divisibility[M]. Cambridge: Cambridge University Press, 1999.
-
4L. Arnold and C. Tudor. Stationary and almost periodic solutions of almost periodic arlene stochastic differential equations [J]. Stochastics and Stochastics Reports, 1998, 64(3): 177-193.
-
5M. M. Fu and Z. X.Liu. Square -mean almost automorphic solutions for some stochastic differential equations[J]. Proceedings of the American Mathematical Society, 2010, 138(10): 3689-3701.
-
6R. M. Dudley. Real Analysis and Probability [M]. Cambridge: Cambridge University Press, 2003.
-
7S. Bochner. A new approach to almost-periodicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(12): 2039-2043.
-
8S. Bochner. Uniform convergence of monotone sequences of function [J]. Proceedings of the National Academy of Sciences of the United States of America,1961, 47(4): 582-585.
-
9Y. Wang and Z. X. Liu. Almost periodic solutions for stochastic differential equations with LV {e}vy noise[l]. Nonlinearity, 2012, 25(25): 2803-2821.
-
10Z. X. Liu and K. Sun. Almost automorphic solutions for stochastic differential equations driven by Levy noise[J]. Journal of Junctional Analysis, 2014, 226(3): 1115-1149.
-
1陈丽,胡良根.一类随机积分微分方程解的稳定性[J].宁波大学学报(理工版),2011,24(4):36-40.
-
2聂赞坎,张道法.二参数随机积分微分方程解的存在唯一性及稳定性[J].工程数学学报,1993,10(3):1-7. 被引量:1
-
3王春生,莫迟.不动点与一类随机积分微分方程的稳定性(英文)[J].广州大学学报(自然科学版),2009,8(2):49-52. 被引量:8
-
4张福青,张启敏.具有分数布朗运动的随机积分微分方程解的稳定性[J].首都师范大学学报(自然科学版),2011,32(1):13-17. 被引量:1
-
5王春生.随机微分方程稳定性的两种不动点方法的比较[J].四川理工学院学报(自然科学版),2012,25(4):81-84. 被引量:13
-
6左继宏.平面上一类两指标随机积分微分方程的弱解[J].襄樊学院学报,2003,24(2):31-40.