期刊文献+

数据不平衡分类研究综述 被引量:6

Survey of Classification with Imbalanced Data
下载PDF
导出
摘要 在分类领域中,当数据集不平衡时,传统的分类算法和评估指标都不能很好地对数据分类。因此,多年来不少学者针对这一领域进行研究。主要分为三大类,即抽样方法、代价敏感方法、集成方法。同时针对这个领域枚举一些评估指标。 In classification field, when the data is imbalanced, the traditional classification algorithms and evaluation criteria are not good for it. So,a lot of researchers study it recent years. Mainly divides into three categories, such as resample technique, cost-sensitive learning and ensemble techniques. At the same time, puts forward some new standards to evaluate the algorithms in this field.
作者 李元菊
出处 《现代计算机》 2016年第3期30-33,50,共5页 Modern Computer
关键词 数据不平衡 抽样 代价敏感 集成方法 Imbalanced Data Resample Cost-Sensitive Learning Ensemble Technique
  • 相关文献

参考文献25

  • 1N.V. Chawla, N. Japkowicz, A. Kotcz, Edifial: Special Issue on Learning from Imbalanced Data Sets, SIGKDD Explorations,2004,6 (1):1-6.
  • 2H. He, E.A. Garcia, Leamingfrom Imbalanced Data, IEEE Transactions on Knowledge and Data Engineefing,2009,21(9):1263- 1284.
  • 3Q. Yang, x. Wu, 10 Challenging Problems in Data Mining Research, International Journal of Information Technology and DecisionMaking, 2006,5 (4) : 597-604.
  • 4Y. Sun, A.K.C. Wong, M.S. Kamel, Classification of lmbalanced Data: a ltevlew, International Journal oI lattern rtecognmon ana Artificial Intelligence, 2009,23 (4) : 687-719.
  • 5A. Fernandez, V. Lopez, M. Galar, M.J. del Jesus, F. Herrera, Analysing the Classification of Imbalanced Data-Sets with Multiple Classes: Binarization Techniques and Ad-hoc Approaches, Knowledge-Based Systems 42,2013:97-110.
  • 6M. Lin, K. Tang, X. Yao, Dynamic Sampling Approach to Training Neural Networks for Muhiclass Imbalance Classification, IEEE Transactions on Neural Networks and Learning Systems, 2013,24 (4) :647-660.
  • 7G. Weiss, Mining with Rarity: a Unifying Framework, SIGKDD Explorations Special Issue on Learning from Imbalanced Datasets, 2004,6(1 ) :7-19.
  • 8M.V. Joshi, V. Kumar, R.C. Agarwal, Evaluating Boosting Algorithms to Classify Rare Classes: Comparison and Improvements, in: Proceedings of the First IEEE International Conference on Data Mining (ICDM '01 ), 2001.
  • 9D. Lewis, W. Gale, Training Text Classifiers by Uncertainty Sampling,in: Proceedings of the Seventeenth Annual International ACM SIGIR Conference on Research and Development in Information, New York,NY, August 1998:73-79.
  • 10M. Kubat, R. Holte, S. Matwin, Machine I.earning for the Detection of Oil Spills in Satellite Radar Images, Mach. Learn. 30,1998 : 195-215.

二级参考文献13

  • 1He Haibo, Edwardo A. Learning from Imbalanced Data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
  • 2Japkowicz N, Stephen S. The Class Imbalance Problem: A Systematic Study[J]. Intelligent Data Analysis, 2002, 6(5): 429- 450.
  • 3Chawla N V, Japkowicz N, Kolcz A. Editorial: Special Issue on Learning from Imbalanced Data Sets[J]. SIGKDD Explorations,2004, 6(1): 1-6.
  • 4Chawla N V, Hall L O, Bowyer K W, et al. SMOTE: Synthetic Minority Oversampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16(3): 321-357.
  • 5Guo Hongyu, Herna L V. Learning from lmbalanced Data Sets with Boosting and Data Generation: The DataBoost-IM Approach[J]. Sigkdd Explorations, 2004, 6(1 ): 30-39.
  • 6Charles X L,Huang Jin,Harry Z.AUC:A Statistically Consistent and More Discriminating Measure Than Accuracy[C] //Proc.of the 18th International Conference on Artificial Intelligence.[S.l.] :IEEE Press,2003.
  • 7Hand D J,Till R J.A Simple Generalization of the Area Under the ROC Curve for Multiple Class Classification Problems[J].Machine Learning,2001,45(2):171-186.
  • 8Qu Haini,Li Guozheng,Xu Weisheng.An Asymmetric Classifier Based on Partial Least Squares[J].Pattern Recognition,2010,43(10):3448-3457.
  • 9Li Guozheng,Meng Haohua,Lu Wencong,et al.Asymmetric Bagging and Feature Selection for Activities Prediction of Drug Molecules[C] //Proc.of the 2nd International Symposium on Computer and Computational Sciences.[S.l.] :IEEE Press,2007.
  • 10Foster Provost,Tom Fawcett. Robust Classification for Imprecise Environments[J] 2001,Machine Learning(3):203~231

共引文献78

同被引文献25

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部