期刊文献+

基于深度卷积网络的同款商品图像检索研究 被引量:1

Research on Large Scale Same Style Commodity Image Retrieval Based on Deep Convolution Neural Network
下载PDF
导出
摘要 使用深度卷积神经网络来进行大规模的同款商品图像检索研究,同时设计一种可利用多种类标信息来进行神经网络训练的网络结构,并与传统的Bo F图像检索框架进行对比。相较于传统的方法,基于深度卷积神经网络的检索精度有较大幅度的提高。 Designs and trains a new structure of deep convolution neural network using multi-labeled image. Uses it to do same style commodity image retrieval. Compared with traditional bag of features method, it gets a much higher MAP score.
作者 张宏毅
出处 《现代计算机》 2016年第3期51-53,共3页 Modern Computer
关键词 图像检索 深度卷积神经网络 深度学习 Convolution Neural Network Image Retrieval Deep Learning
  • 相关文献

参考文献6

  • 1Krizhevsky A, Sutskever I, Hinton G E. Imagenet Classification with Deep Convolutional Neural Networks[C]. Advances in Neural Information Processing Systems, 2012 : 1097-1105.
  • 2Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. arXiv Preprint arXiv:1409,1556, 2014.
  • 3Szegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions[J]. arXiv Preprint arXiv:1409.4842, 2014.
  • 4Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
  • 5Goodfellow I J, Warde-Farley D, Mirza M, et al. Maxout Networks[J]. arXiv Preprint arXiv:1302.4389, 2013.
  • 6Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional Architecture for Fast Feature Embedding[C]. Proceedings of the ACM Inter- national Conference on Multimedia. ACM, 2014: 675-678.

同被引文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部