期刊文献+

基于扩展卡尔曼滤波的动态协同定位算法 被引量:5

A Research of Dynamic Cooperative Localization System via Extended Kalman Filter
下载PDF
导出
摘要 卫星导航系统是目前应用最为广泛的一种定位与导航系统,然而在城区、峡谷、森林等复杂条件下其所提供的定位与导航性能会下降甚至无法提供服务。针对该问题,已经有多种卫星导航增强手段被提出,其中,用户间的协同定位由于可以减轻对基础设施的依赖,具有很大发展前景。本文提出了基于扩展卡尔曼的协同定位算法,建立了动态条件下用户的位置速度矢量模型的系统方程,利用该算法在动态协同定位系统中实现对用户的位置和速度的估计。文中论述了算法的详细过程,并通过计算机软件实时产生卫星的三维位置,构建了一个动态用户协同定位场景。数值仿真结果表明,该算法能够有效地估计出用户的位置和速度。 The global navigation satellite system(GNSS)is widely used in navigation and positioning system.While in some GNSS-challenged environments,such as urban canyons,dense foliage and building block,it will fail to guarantee the service quality or can't provide service at all.Several satellite enhanced means were presented to solve such problem and among them,the cooperative localization has great prospective as it can reduce the dependence of infrastructure.This paper established an equation of the system based on a position-velocity-time(PVT)model and employed the extended Kalman filter algorithm to estimate the user's location and velocity in a dynamic cooperative localization system.This paper gave out the detailed derivation process and built the model though the three-dimension position of each satellite generated by software.The simulation results show that the algorithm can track the path of dynamic users and effectively estimate the user's velocity.
出处 《导航定位学报》 2016年第1期44-49,共6页 Journal of Navigation and Positioning
关键词 扩展卡尔曼滤波 协同定位 动态系统 性能估计 extended kalman filter cooperative localization dynamic system performance estimation
  • 相关文献

参考文献9

  • 1KURAZUME R,HIROSE S,NAGATA S,et al.Study on cooperative positioning system[EB/OL].(2015-03-21)[2015-06-18].http://www.researchgate.net/publication/3631511_Study_on_Cooperative_Positioning_System.
  • 2WYMEERSCH H,LIEN J,WIN M Z.Cooperative localization in wireless networks[J].Proceedings of the IEEE,2009,97(2):23-34.DOI:10.1109/JPROC.2008.2008853.
  • 3SHARP I,YU K G,HEDLEY M.On the GDOP and accuracy for indoor positioning[J].IEEE Transactions on Aerospace&Electronic Systems,2012,48(3):2032-2051.
  • 4CACERES M A,SOTTILE F,GARELLO R,et al.Hybrid GNSS-to a localization and tracking via cooperative unscented kalman filter[EB/OL].[2015-06-18].http://www.researchgate.net/publication/224205981_Hybrid_GNSS-ToA_localization_and_tracking_via_cooperative_unscented_Kalman_filter.
  • 5CACERES M A,PENNA F,WYMEERSCH H,et al.Hybrid GNSS-terrestrial cooperative positioning via distributed belief propagation[C]//The Institute of Electrical and Electronics Engineers(IEEE).Global Telecommunications Conference(GLOBECOM 2010).New York:IEEE,2010:1-5.DOI:10.1109/GLOCOM.2010.5683684.
  • 6SIMON D.Optimal state estimation:Kalman,H infinity,and nonlinear approaches[M].New Jersey:John Wiley&Sons,2006:88-89.
  • 7BELLANTONI J F,DODGE K W.A square root formulation of the Kalman-Schmidt filter[J].AIAA Journal,1967,5(7):1309-1314.DOI:10.2514/3.4189.
  • 8TIAN Shiwei,HUANG Boyu,LI Guangxia,et al.A perspective on Cramér-Rao bound for hybrid GNSS-terrestrial cooperative positioning[EB/OL].[2015-06-18].http://www.cnki.net/KCMS/detail/detail.aspx?QueryID=2&CurRec=1&recid=&filename=WXDH201405009017&dbname=CPFD0914&dbcode=CPFD&pr=&urlid=&yx=&uid=WEEvREcwSlJHSldSdnQ1V1lLcDUvRkY1aHhXeENsODZxK0Jsa1IyNTlTUjF6b1U3ZDJHUEpqMFl3UzZYOWZ2eVlB PT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MTg3NTZackc0SDlYT XFvOUZiZXNPQ3hOS3VoZGhuajk4VG5qcXF4ZEVlTU9VS3JpZlp1TnVGaXZrVXJmTElWd1dNalhQ.
  • 9PENNA F,CACERES M A,WYMEERSCH H.Cramér-Rao bound for hybrid GNSS-terrestrial cooperative positioning[J].IEEE Communications Letters,2010,14(11):1005-1007.

同被引文献30

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部