摘要
目的:探测乳腺癌转移相关的基因,为乳腺癌转移的早期诊断和个性治疗提供参考。方法:检索Pub Med数据库获取文献,利用Meta Map进行概念匹配,下载匹配结果,并导入到数据分析软件,得到乳腺癌转移相关基因和基因-基因矩阵;使用Ucinet6建立乳腺癌转移相关基因的相互作用网络,分析网络的相关指标。结果:tp53、thra、erbb2、esr1、cdh1、egfr、nr4a1、cd69等是乳腺癌转移核心基因。结论:基于共词分析法能获得乳腺癌转移相关基因,但cd69对于乳腺癌转移的具体过程尚不明确,需要进一步验证。
Objective To provide the reference for early diagnosis and treatment of breast cancer by detecting its metastasis-related genes. Methods Breast cancer metastasis- related genes were searched from Pub Med- covered papers with their conception matched according to the Meta Map. A gene-gene matrix was generated using data analysis software. An interaction network of breast cancer metastasis-related genes was established using Ucinet 6and its related indexes were analyzed. Results tp53,thra,erbb2,esr1,cdh1,egfr,nr4 al and cd69 were the core genes for breast cancer metastasis. Conclusion Co-word analysis can show breast cancer metastasis-related genes.However,the role of cd69 in breast cancer metastasis remains unclear and is thus necessary to be further confirmed.
出处
《中华医学图书情报杂志》
CAS
2016年第3期35-39,共5页
Chinese Journal of Medical Library and Information Science
关键词
共词分析
网络分析
乳腺癌转移
基因
UCINET
可视化
Co-word analysis
Network analysis
Breast cancer metastasis
Gene
Ucinet
Visualization
AND Neoplasm Metastasis [Mesh ] AND humans [mesh]"为检索策略( 1966 年 1 月 1 日-2015 年 7 月 31 日)
在 Pub Med 共检索到 375 篇乳腺癌转移相关基因文献
以 MEDLINE 格式进行保存
作为挖掘样 本。 将 MEDLINE 格 式 文 本 上 传 到 在 线 Meta Map
选择 UMLS 涵盖的所有词表及所有语义类型
进行概念匹配
得到所保存文献题名和摘要的 UMLS 概念匹配结果。