期刊文献+

表没食子儿茶素没食子酸酯对脱矿牙本质粘接面改性的研究 被引量:2

Biomodifying effect of epigallocatechin-3-gallate on dentine substrate splicing surface
原文传递
导出
摘要 目的 探讨经天然交联剂表没食子儿茶素没食子酸酯(epigallocatechin-3-gallate,EGCG)改性后脱矿牙本质粘接面的渗透率、亲水性、耐酶解能力及粘接耐久性的变化,寻找可用于牙本质粘接面预处理的理想天然交联剂.方法 2%牛血清白蛋白溶液模拟髓压,测定在模拟龋病条件下0.02%、0.1%EGCG对牙本质表面渗透率的影响,空白对照组牛血清白蛋白溶液中不含EGCG,阳性对照组为脱敏剂处理组(每组15个试件).检测近髓和远髓牙本质经0.1%EGCG预处理60和120 s、0.5和1h后表面接触角的变化,空白对照组不经EGCG预处理(每组10个试件).扫描电镜观察空白对照组,0.02%、0.1%及0.5%EGCG预处理组(均预处理120 s)经100 mg/L Ⅰ型胶原酶处理后牙本质粘接界面形态的改变;检测4组牙本质粘接试件冷热循环前后微拉伸强度(即粘接强度,每组每种处理方式30个试件).结果 与空白对照组相对渗透率[(151.3±22.3)%]相比;0.1%EGCG牙本质表面相对渗透率[(23.7±6.3)%]显著减少(P<0.05).与空白对照组相比,0.1%EGCG预处理120 s、0.5和1h后,近髓牙本质表面接触角分别提高31.0%、53.5%、57.8%;远髓牙本质表面接触角分别提高37.4%、59.3%、62.4%.0.1%和0.5%EGCG预处理120 s后牙本质粘接试件冷热循环前粘接强度分别为(29.4±4.8)和(19.8±4.9) MPa,冷热循环后粘接强度分别为(19.9±5.1)和(15.3±6.3) MPa.结论 模拟龋病条件下,0.1%EGCG可使牙本质表面渗透性降低;0.1%EGCG预处理使牙本质粘接基底疏水性提高,耐酶解能力增强,从而提高粘接耐久性. Objective To investigate the effect of epigallocatechin-3-gallate(EGCG) on biomodification of demineralized dentine substrate,in its permeability,hydrophobicity,and inhibition ability to collagen enzymatic degradation.Methods The dentine substrates were treated with simulated pulpal pressure created by mixtures of 0.02%,0.1% EGCG/bovine serum albumin(BSA) in acidic environment (pH4.4) for 48 h.A fluid-transport model was used to measure the fluid permeability through demineralized dentine substrate.Positive replicas of dentine substrate were fabricated before and after being subjected to acidic environment for scanning electron microscope(SEM) examination.The blank group contained no EGCG and the positive group were treated with Gluma desensitizer.Static contact angle measurements on demineralized dentin and 0.1% EGCG primed dentin were performed by contact angle analyzer.The priming time were 60 s,120 s,0.5 h,1 h.Dentine specimens bonded with Adper single bond 2 were subjected to 100 mg/L collagenase and observed under SEM.Resin-bonded specimens(with 0.02%,0.1%,0.5% EGCG priming,or without EGCG priming) were created for micro-tensile bond strength evaluation(MTBS).Resinbonded specimens after thermolcycling were created for MTBS evaluation.Results The fluid permeability in the blank control group increased([151.3±22.3]%),the fluid permeability in 0.1% EGCG/BSA group decreased([23.7±6.3]%).Compared to the blank control group,the contact angle of 120 s,0.5 h,1 h groups increased by 31.0%,53.5%,57.8% in deep dentin and 37.4%,59.3%,62.4% in shallow dentin.The SEM examination showed that 0.1% and 0.5% EGCG priming for 120 s significantly increased dentin collagen's resistance to collagenase.The immediate MTBS of 0.1% and 0.5% EGCG groups were (29.4±4.8) and (19.8± 4.9) MPa.After thermol cycling,the MTBS of 0.1% and 0.5% EGCG groups were (19.9±5.1) and (15.3± 6.3) MPa.Conclusions Under acidic environment(pH4.4),the 0.1% EGCG can reduce dentine permeability under acidic environment.The 0.1% EGCG can increase hydrophobicity of dentin substrate,and strengthen dentin substrate's resistance to collagenase hydrolysis,thus increased the resin-dentin bonding durability.
出处 《中华口腔医学杂志》 CAS CSCD 北大核心 2016年第3期148-153,共6页 Chinese Journal of Stomatology
基金 国家自然科学基金(81100743、81200776) 广东省自然科学基金(2014A030313068) 广东省科技计划(20138051000031)
关键词 牙本质通透性 牙本质粘结剂 胶原酶类 表没食子儿茶素没食子酸酯 Dentin permeability Dentin-bonding agents Collagenases Epigallocatechin gallate
  • 相关文献

参考文献19

  • 1Takahashi M, Nakajima M, Tagami J, et al. The importance of size- exclusion characteristics of type I collagen in bonding to dentin matrices[J]. Acta Biomater, 2013, 9(12): 9522- 9528. DOl: 10.1 016/j .actbio.2013.07 .037.
  • 2Sano H, Takatsu T, Ciucchi B, et al, Nanoleakage: leakage within the hybrid layer[J]. Oper Dent, 1995, 20(1): 18-25.
  • 3Sauro S, Mannocci F, Toledano M, et al. Influence of the hydrostatic pulpal pressure on droplets formation in current etch- and- rinse and self- etch adhesives: a video ratelTSM microscopy and fluid filtration study[J]. Dent Mater, 2009, 25 (11): 1392-1402.001: 1O.1016/j.dental.2009.06.01O.
  • 4Li Y, Thula TT, Jee S, et al. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links [J]. Biomacromolecules, 2012, 13(1): 49- 59. 001: 10.10211 bm201070g.
  • 5Dall'Orologio GO, Ishihara H, Finger WJ, et al. In vitro and in vivo evaluation of the effectiveness of three dentin desensitizing treatment regimens[J]. Am J Dent, 2014, 27(3): 139-144,.
  • 6郑凯宾,吴淑仪,陈伯莉,廖维立,李彦.黄芩甙元和槲皮黄酮对牙本质胶原耐酶解能力的影响[J].中华口腔医学杂志,2014,49(11):667-671. 被引量:2
  • 7岳嘉曦,刘思颖,付东杰,黄翠.植物提取物在牙本质粘接中应用的研究进展[J].中华口腔医学杂志,2014,49(11):700-702. 被引量:1
  • 8Vidal CM, Aguiar TR, Phansalkar R, et al. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins[J]. Acta Biomater, 2014, 10(7): 3288- 3294. DOl: 10.10 16/j.actbio.20 14.03.036.
  • 9Liu Y, Bai X, Li S, et al. Molecular weight and galloylation affect grape seed extract constituents' ability to cross- link dentin collagen in clinically relevant time[J]. Dent Mater, 2015,31(7): 814-821. 001: 1O.1016/j.dentaI.2015.04.006.
  • 10Sauro S, Pashley DH, Montanari M, et al. Effect of simulated pulpal pressure on dentin permeability and adhesion of self-etch adhesives[J]. Dent Mater, 2007, 23(6): 705-713. 001: 10.10 16/j.dentaI.2006.06.0 10.

二级参考文献53

  • 1De Munck J, Van Landuyt K, Peumans M, et al. A criticalreview of the durability of adhesion to tooth tissue: methods and results[J]. J Dent Res,2005,84(2): 118-132.
  • 2Breschi L, Mazzoni A, Ruggeri A, et al. Dental adhesion review: aging and stability of the bonded interface[J]. Dent Mater, 2008, 24(1): 90-101.
  • 3Fang M, Liu R, Xiao Y, et al. Biomodification to dentin by a natural crosslinker improved the resin-dentin bonds[J]. J Dent, 2012,40(6): 458-466.
  • 4Frazier IRA, Deaville ER, Green RJ, et al. Interactions of tea tannins and condensed tannins with proteins[J]. J Pharm Biomed Anal,2010,51 (2): 490-495.
  • 5Bedran-Russo AK, Castellan CS, Shinohara MS, et al. Characterization of biomodified dentin matrices for potential preventive and reparative therapies[J]. Acta Biomater, 2011, 7(4): 1735-1741.
  • 6Hiraishi N, Sono R, Sofiqul I, et al. In vitro evaluation of plant-derived agents to preserve dentin collagen[J]. Dent Mater, 2013,29( 10): 1048-1054.
  • 7Castellan CS, Pereira PN, Grande RH, et al. Mechanical characterization of proanthoeyanidin-dentin matrix interaction [J]. Dent Mater,2010,26( 10): 968-973.
  • 8Zhai W, Lti X, Chang J, et al. Quereetin-crosslinked porcine heart valve matrix: mechanical properties, stability, anticalcification and cytocompatibility[J]. Acta Biomater, 2010, 6(2): 389-395.
  • 9Sartor L, Pezzato E, Dell'Aica I, et al. Inhibition of matrix-proteases by polypbenols: chemical insights for anti-inflammatory and anti-invasion drug design[J]. Biochem Pharmacol, 2002,64( 2 ): 229-237.
  • 10Hashimoto M. A review: micromorphological evidence of degradation in resin-dentin bonds and potential preventional solutions[J]. J Biomed Mater Res B Appl Biomater, 2010, 92( 1 ): 268-280.

共引文献1

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部