期刊文献+

气象无人机风速解算新模型的设计及仿真研究 被引量:4

A New Method of Meteorological UAV Wind Velocity Resolution Model Design and Simulation
下载PDF
导出
摘要 气象无人机探测过程中,风速矢量由无人机飞行参数解算得到,解算方法和对应参数的测量直接影响测风精度。从现有风速解算模型出发,考虑了气动角、欧拉角、航迹角,最终确定引入"航迹倾斜角"和"俯仰角",建立了一种新的风速解算模型。模型推导过程中发现,当无人机平稳飞行时,航迹倾斜角、俯仰角是影响测风精度的关键因素。与现有模型相比,新模型能有效提高测风精度,当航迹倾斜角与俯仰角不等时,必须对风速偏差进行修正。基于新模型的测风误差仿真分析结果表明:存在某一角度,当偏流角小于该角时,风速误差受航迹倾斜角、俯仰角及偏流角共同影响;当偏流角大于该角时,风速误差受航迹倾斜角、俯仰角影响较小,该角的大小与传感器的测量值和误差值有关。 In the meteorological UAV detection,wind velocity vector is resolved from UAV flying parameters.The detected velocity accuracy is directly affected by the resolution method and the detection measurement of corresponding parameters.Starting from existing wind resolution models,this paper set up a new wind velocity resolution method which has introduced flying track tilt angle and pitch angle in view of pneumatic angle,euler angle and flying track angle.It is discovered in the model derivation procedure that when the UAV flies stably,flying track tilt angle and pitch angle are the key factors which affect the accuracy for wind velocity accuracy.Compared with existing models,the new model can improve wind detection accuracy effectively,when the flying track tilt angle unequals the pitch angle,the wind speed deviation must be corrected.Detecting error result proves that there exists one angle affected by the detecting value and error value of the sensor.When drift angle is smaller than this angle,wind velocity error is mutually affected by flying track tilt angle,pitch angle and drift angle.When drift angle is bigger than itself,wind velocity error is less affected by flying track tilt angle and pitch angle.
出处 《气象科技进展》 2016年第1期31-36,共6页 Advances in Meteorological Science and Technology
关键词 气象无人机 风速解算模型 航迹倾斜角 俯仰角 仿真 meteorological UAV wind velocity resolution model flying track tilt angle pitch angle simulation
  • 相关文献

参考文献14

  • 1HoUand G J, Webster P J, Curry J A, et al. The Aerosonde Robotic Aircraft: A new paradigm for environmental observations. Bulletin of the American Meteorological Society, 2001, 82(5): 889-902.
  • 2Hou J. Analysis on structure and characteristics of pitot type flowmeter. Journal of Xinjiang University (Natural Science Edition), 2005, 22 (2): 189-193.
  • 3周树道,王彦杰,王敏,叶松,朱国涛.基于非惯性运动状态的气象无人机测风方法研究[J].传感技术学报,2011,24(1):155-158. 被引量:9
  • 4王彦杰,周树道,朱国涛,李浩,卫克晶.基于转动状态的气象无人机测风方法[J].气象科学,2011,31(5):576-581. 被引量:12
  • 5Haering E A. Air Data Calibration of a High-Performance Aircraft for Measuring Atmospheric Wind Profiles. NASA Technical Memorandum 101714, 1989.
  • 6World Meteorological Organization. Aircraft Meteorological Data Relay (AMDAR) Reference Manual. Geneva: WMO, 2003.
  • 7Klopfenstein R. Air velocity and flow measurement using a pitot tube. ISA Transactions, 1998, 37(4): 257-263.
  • 8Bouhy J. Evolution of the pitot tube sensor. Flow Measurement Technology in Practice, 1996, 21(1): 1-4.
  • 9Thomas D. Make the most of averaging pitot tubes. Chemical Processing, 2005, 68(7): 33-35.
  • 10周伟静,沈怀荣.磁偏角对无人机皮托-静压管测风的影响分析[J].装备指挥技术学院学报,2006,17(4):97-101. 被引量:8

二级参考文献38

共引文献61

同被引文献43

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部