期刊文献+

一类包含媒体报道的SEQIHRS传染病模型的分析 被引量:3

Analysis of an SEQIHRS epidemic model with media coverage
原文传递
导出
摘要 研究了一类包含媒体报道与隔离措施的SEQIHRS传染病模型的动力学行为。首先得到了系统的有效再生数RC。其次,通过简单计算发现:系统总是存在无病平衡点,并且当RC<1时,它是局部渐近稳定的;当RC>1时,它是不稳定的。然后,运用中心流形定理,发现当域值RC通过1时,系统将会发生跨临界分支,并且唯一的地方病平衡点是局部渐近稳定的。此外,计算结果表明,被隔离个体的传染力将影响卫生部门如何实施相应的隔离措施。 An SEQIHRS epidemic model is proposed for the transmission dynamics of an infectious disease with quarantine and isolation control strategies. Firstly,we obtain the effective reproduction number RCof the system. Secondly,simple calculations indicate that the system always exists a disease-free equilibrium,and it is locally asymptotically stable if RC 1,whereas it is unstable if RC〉1.Thirdly,by use of central manifold theory,it is established that as RC passes through unity,transcritical bifurcation occurs in the system and the unique endemic equilibrium is asymptotically stable. In addition,mathematical results indicate that infectiousness of hospitalized individuals will determine howthe government takes control measures.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2016年第1期115-122,共8页 Journal of Shandong University(Natural Science)
基金 山西省自然科学基金项目资助(2013021002-2)
关键词 传染病模型 媒体报道 平衡点 稳定性 epidemic model media coverage equilibrium stability
  • 相关文献

参考文献18

  • 1BUONOMO B, D'ONOFRIO A, LACITIGNOLA D. Global stability of an SIR epidemic model with information dependent vaccination[J]. Mathematical Biosciences, 2008, 216(1 ) :9-16.
  • 2CASTILLO-CHAVEZ C, SONG Baojun. Dynamical models of tuberculosis and their applications [ J ]. Mathematical Biosci- ences & Engineering, 2004, 1 ( 2 ) :361-404.
  • 3CHAMCHOD F, BRITTON N F. On the dynamics of a two-strain influenza model with isolation [ J]. Mathematical Modelling of Natural Phenomena, 2012, 7 (3) :49-61.
  • 4CHITNIS N, HYMAN J M, CUSHING J M. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model [ J ]. Bulletin of Mathematical Biology, 2008, 70 (5) :1272-1296.
  • 5CUI Jingan, SUN Yonghong, ZHU Huaiping. The impact of media on the control of infectious diseases [ J ]. Journal of Dy- namics and Differential Equations, 2007, 20( 1 ) :31-53.
  • 6CUI Jingan, TAO Xin, ZHU Huaiping. An SISinfection model incorporating media coverage[ J]. Rocky Mountain Journal of Mathematics, 2008, 38 ( 5 ) : 1323-1334.
  • 7GREENBERG M E, LAI M H, HARTEL G F, et al. Response to a monovalent 2009 influenza A(H1N1 ) vaccine[J]. The New England Journal of Medicine, 2009, 361 (25) :2405-2413.
  • 8HANCOCK K, VEGUILLA V, LU Xiuhua, et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza vi- res [ J ]. The New England Journal of Medicine, 2009, 361 (20) : 1945-1952.
  • 9KAO R R, ROBERTS M G. Quarantine-based disease control in domesticated animal herds [ J ]. Applied Mathematics Letters, 1998, 11(4) :115-120.
  • 10KISS I Z, CASSELL J, RECKER M, et al. The impact of information transmission on epidemic outbreaks[ J]. Mathematical Biosciences, 2010, 225 ( 1 ) : 1-10.

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部