期刊文献+

一种新的多尺度深度学习图像语义理解方法研究 被引量:13

A new multi-scale image semantic understanding method based on deep learning
原文传递
导出
摘要 如何在深度学习中融合图像的多尺度信息,是基于深度学习的视觉算法需要解决的一个关键问题。本文提出一种基于多尺度交替迭代训练的深度学习方法,并应用于图像的语义理解。算法采用卷积神经网络(CNN)从原始图像中提取稠密性特征来编码以每个像素为中心的矩形区域,将多个尺度图像交替迭代训练,能够捕获不同尺度下的纹理、颜色和边缘等重要信息。在深度学习提取特征分类结果的基础上,提出了一种结合超像素分割的方法,统计超像素块的主导类别,来校正分类错误的像素类别,同时描绘出目标区域边界轮廓,完成最终的语义理解。在Stanford Background Dataset 8类数据集上验证了本文方法的有效性,准确率达到77.4%。 How to fuse multi-scale information of image in deep learning is a key problem to be solved. To solve these problems,this paper proposed a deep learning method based on multi-scale iterative training for image semantic understanding. The algorithm uses the convolution neural network (CNN) to extract dense feature vectors from raw pixel for encoding regions centered on each pixel. The multi-scale itera- tive training captures different scales of textures,colors, edges and other important information. A new method combined with superpixel segmentation is proposed, to estimate the leading category of superpix- el block and to correct the pixel classification error. It can depict the outline of the target area boundary and complete the final semantic understanding. The experiments on Stanford Background Dataset-8 verify the effectiveness of the proposed method,and the accuracy rate is 77.4%.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第2期224-230,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61202168 61403281 61472278) 天津市自然科学基金重点(14JCZDJC31700) 天津市高校发展基金(20120802 20130704)资助项目
关键词 土壤有机质 土壤因子 空间非平稳性 地理加权回归模型 艾比湖流域 image semantic understanding superpixel segmentation convolutional neural network(CNN) deep learning
  • 相关文献

参考文献20

  • 1李大湘,彭进业,贺静芳.基于EMD-CkNN多示例学习算法的图像分类[J].光电子.激光,2010,21(2):303-306. 被引量:11
  • 2Jian Yao, Sanja Fidler, Raquel Urtasun, et ai. Describing the scene as a whole;Joint object detection,scene clas- sification and semantic segmentation[A]. Proc. of CVPR [C]. 2012,702-709.
  • 3Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images [A]. Proc, of International Conference of Computer Vi- sion (IOOV)[C]. 2011,105-112.
  • 4DAI Ji-feng, HE Kai-ming, SUN Jian, et al. Convolutional feature masking for joint object and stuff sgementation [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015,510-516.
  • 5Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images [A]. Proc, of International Conference of Computer Vi- sion (IOOV)[C]. 2011,105-112.
  • 6DAI Ji-feng, HE Kai-ming, SUN Jian, et al. Convolutional feature masking for joint object and stuff sgementation [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015,510-516.
  • 7Schulz H, Behnke S. Learning object-class segmentation with convolutional neural networks[A]. Proc. of In 11th European Symposium on Artificial Neural Networks (ES- ANN)[C].2012,357-363.
  • 8Jonathan Long, Evan Shelhamer, Darrell Trevon, et al Fully Convolutional networks for semantic segmentation[A]. Proc. of IEEE Conference on Computer Vision and Pattern Recognition[C]. 2015,867-870.
  • 9Clement Farabet, Camille Couprie. Scene parsing with multiscale feature learning, purity trees, and optimal cov- ers[A]. Proc. of International Conference on Machine Learning[C]. 2012,345-351.
  • 10Clement Farabet,Camille,Couprie Najman Laurent,et al Learning hierarchical features for scene labeling[J]. IEEE Trasnsactions on Pattern Analysis and Machine Intelli- gence,2013,35(8):1915-1929.

二级参考文献15

  • 1Thomas G Dietterich,Lathrop Richard H,Lozano-perez T. Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997,89(12) :31-71.
  • 2Maron Oded, Ratan Aparna Lakshmi. Multiple-instance learning for natural scene classification[A]. In: Proceedings of the 15th International Conference of Machine Leaming[C]. 1998,341-349.
  • 3Andrews Stuart, Hofmann Thomas, Tsochantaridis Ioannis. Multiple instance leaming with generalized support vector machines[A]. In:Proceedings of the 18th National Conference on Artificial Intelligence,Edmonton[C]. 2002,943-944.
  • 4Peter V Gehler,Olivier Chapelle. Deterministic Annealing for Multiple- Instance Leaming[A]. Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (AISTATS 200?)[C]. 2007: 123-130.
  • 5Thomas Garlner, Peter A Flach, Adam. Kowalczyk, et al. Multi-instance kernels[A]. In Proceedings of the 19th International Conference on Machine Learning[C]. 2002,179-186.
  • 6Jame T Kwok, Pak-Ming P. Cheung. Marginalized multi-instance kernels[A]. In Proceedings of the 20th International Joint Conference on Artificial Intelligence[C]. 2007,901-906.
  • 7CHEN Yi-xin, WANG Jame Z. Image categorization by learning and reasoning with regions[J].Journal of Machine Learning Research, 2004,5(8) :913-939.
  • 8CHEN Yi-xin, BI Jin-bo, Wang James Z. MILES: Multiple-Instance Learning via Embedded Instance Selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):1931-1947.
  • 9ZHANG Dan,SHI Zhen-wei,SONG Yang-qiu,et al. Localized content- based image retrieval using semi-supervised multiple instance leaming[A]. Asian conference on computer vision (ACOV07)[C]. 2007, 180-188.
  • 10Zhi-hua, XU Jun-ming. On the relation between multi-instance leaming and semi-supervised learning[A]. In Proceedings of the 24th ICML[C]. 2007,1167-1174.

共引文献10

同被引文献68

引证文献13

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部