期刊文献+

在线学习机制下几何模糊特征目标检测及跟踪 被引量:1

Target Detection and Tracking Based on Geometric Blur with Online Learning Mechanism
下载PDF
导出
摘要 针对目标跟踪中目标框发生偏移、消失等问题,于在线学习机制下提出一种基于几何模糊的跟踪检测学习的目标跟踪方法。以跟踪-检测-学习为框架,利用Lucas-Kanade算法,获得目标的初步跟踪结果。运用几何模糊的匹配思想代替传统检测手法,有效校正跟踪偏移,避免误差累计。整合器比较跟踪、检测结果与上一帧结果的相似度,通过计算正负样本与检测子区域的归一化相关系数比求得置信度,得到目标的精准定位。其结果通过学习器进行在线学习,从而进行下一帧的跟踪。实验结果表明,将该检测思想应用于快速移动目标跟踪时,在背景相似度较高的条件下,表现出了良好的性能,与其他新的方法比较也有较高的定位精度。 To solve the problem of tracking drifts or fail, a robust objects tracking algorithm based on geometric blur is proposed within the framework of online learning. Under the tracking-detection-learning mechanism, Lucas-Kanade algorithm is used to obtain the rough tracking estimation of the target. Based on the idea of geometric blur matching instead of traditional detection methods, the tracking drift is efficiently corrected. Then integrator is designed to compare the similarities between the previous frame and the results of the tracker and the detector. Their confidences are obtained by calculating normalized correlative coefficients between positive and negative samples and the detected region: An online learning is then developed to use the current result to update the tracker and the detector. Experimental results show that when applied to the fact moving target tracking under the condition of high background similarity, the proposed method performs well and outperforms other state-of-the-art methods with higher position accuracy.
作者 陈莹 沈宋衍
出处 《光电工程》 CAS CSCD 北大核心 2016年第2期1-7,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(61104213) 江苏省自然科学基金(BK2011146)
关键词 目标跟踪 几何模糊 跟踪.学习一检测 在线学习 object tracking geometric blur tracking-detection-learning online learning
  • 相关文献

参考文献22

  • 1Yilmaz A, Javed 0, Shah M. Object tracking: A survey[J]. ACM Computing Surveys(S0360-0300), 2006, 38(4): 13.
  • 2Black M J, Jepson A D. Eigentracking: Robust matching and tracking of articulated objects using a view-based representation[J]. International Journal of Computer Vision(S0302-9743), 1998, 26(1): 63-84.
  • 3Jepson A D, Fleet D J, EI-Maraghi T F. Robust online appearance models for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(SI063-6919), 2003, 25(10): 1296-1311.
  • 4Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision(S0920-5691), 2008, 77(1/3): 125-141.
  • 5Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]// IEEE Conference on Computer Vision and Pattern Recognition, New York, 2006, 1: 798-805.
  • 6MEl Xue, LING Haibin. Robust visual tracking using £, minimization[C]// IEEE 12th International Conference on Computer Vision, Kyoto, 2009: 1436-1443.
  • 7Collins R T, LIU Yanxi. Leordeanu M. Online selection of discriminative tracking features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(SOI62-8828), 2005, 27(10): 1631-1643.
  • 8Babenko B, YANG Ming-Hsuan, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(SO 162-8828), 2011, 33(8): 1619-1632. M Yang.
  • 9Leichter I. Mean Shift Trackers with Cross-Bin Metrics[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence (SOI62-8828), 2012, 34(4): 695-706.
  • 10NING Jifeng , ZHANG Lei, ZHANG David, et al. Robust mean-shift tracking with corrected background-weighted histogram[J]. lET ComputerVision(SI751-9632), 2012, 6(1): 62-69.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部