期刊文献+

基于改进活动轮廓模型的图像边界分割 被引量:2

Image Edge Segmentation Based on Improved Active Contour Model
下载PDF
导出
摘要 针对传统活动轮廓模型分割精度低和鲁棒性差的缺陷,提出一种改进的活动轮廓模型的图像边界分割方法.首先在图像分割中引入灰度信息,解决灰度不均匀性带来的不利影响,然后引入了图像梯度信息,避免噪声对边界分割的干扰,并通过最小化能量函数保证轮廓向目标边缘不断演化,最后采用多种类型的图像对其有效性和优越性进行仿真测试.结果表明,改进后的模型可以对灰度不均匀性和噪声图像进行准确的边界分割,分割精度优于传统活动轮廓模型,并且有良好的通用性. In view of the defects of low accuracy and poor robustness of traditional active contour model,an improved active contour model is proposed.First in the image segmentation in gray information,solve the intensity in homogeneity bring adverse effects,then the gradient information of image is introduced,to avoid the interference of noise on the boundary segmentation,and by minimizing the energy function guarantee contour to the edge of the target evolution,finally using multiple types of image on the validity and superiority of the simulation test.The results show that the model can accurately segment the gray level and the noise image,which is very universal,and the segmentation accuracy is better than that of the traditional active contour model.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2016年第1期17-20,25,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家重点实验室开放基金项目(SKLRS-2013-MS-03)
关键词 活动轮廓模型 图像边界 分割模型 局部灰度 局部梯度 active contour model image boundary segmentation model local gray level local gradient
  • 相关文献

参考文献10

  • 1Goncalves H,Goncalves J A,Corte-Real L.HAIRIS:A method for automatic image registration through histogram-based image segmentation[J].Image Processing,IEEE Transactions on,2011,20(3):776-789.
  • 2Heyde B,Jasaityte R,Barbosa D,et al.Elastic image registration versus speckle tracking for 2-D myocardial motion estimation:a direct comparison in vivo[J].Medical Imaging,IEEE Transactions on,2013,32(2):449-459.
  • 3刘国奇,周智恒.基于多阶段向量场的活动轮廓模型[J].华南理工大学学报(自然科学版),2013,41(6):47-52. 被引量:4
  • 4Zheng Q,Dong E Q,Cao Z L.Graph cuts based active contour model with selective local or global segmentation[J].Electronics Letters,2012,48(9):490-491.
  • 5Wang L,Li C M,Sun Q,et al.Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J].Computerized Medical Imaging and Graphics,2009,33(7):520-531.
  • 6Xu X Z,He C J.Implicit Active Contour Model with Local and Global Intensity Fitting Energy[J].Mathematical Problems in Engineering,2013,11:127-135.
  • 7Li C M,Kao C Y,Jonh C F.Minimization of Region-Scalable Fitting Energy for Image Segmentation[J].Pattern Recongnition,2010,17(10):1199-1206.
  • 8黄保山,滕炯华,徐婧林,周三平.基于偏移场修正的C-V模型水平集图像分割算法[J].西北工业大学学报,2013,31(2):218-222. 被引量:6
  • 9潘改,高立群,张萍.融合C-V和GVF的测地线活动轮廓模型[J].东北大学学报(自然科学版),2013,34(2):166-169. 被引量:6
  • 10Chan T F,Vese L A.Active contours without edges[J].Image processing, IEEE transactions on, 2001,10 ( 2 ):266-277.

二级参考文献28

  • 1王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2010.
  • 2Tony F Chan, Luminita A Vese. Active Contours Without Edges. IEEE Trans on Image Processing, 2001,10(2) : 266-277.
  • 3Li Chunning, Kao Chiuyen, Gore John C. Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Trans on Image Processing, 2008, 1940-1949.
  • 4Wang Li, Li Chunming, Sun Quansen. Active Contours Driven by Local and Global Intensity Fitting Energy with Application to Brain MR Image Segmentation. Computerized Imaging and Graphics, 2009, 520-531.
  • 5Li Chunming, Xu Chengyang, Gui Changfeng, et al. Level Set Formulation without Re-lnitialization:a New Variational Formulation. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,1 : 430436.
  • 6Kass M, Witkin A, Terzopoulus D. Snakes : active contourmodel [ J ]. International Journal of Computer Vision,1988,1(4) :321-331.
  • 7Paragios N,Deriche R. Geodesic active contours and levelsets for the detection and tracking of moving objects [ J].IEEE Transactions on Pattern Analysis and Machine Inte-lligence, 2000,22(3) :266-280.
  • 8Xu C, Prince J. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing,1998,7(3):359-369.
  • 9Ning J,Wu C K,Liu S,et al. NGVF:an improved externalforce field for active contour model [ J]. Pattern Recogni-tion Letters, 2007,28:58-63.
  • 10Wang Y,Liu L,Zhang H,et al. Image segmentation usingactive contours with normally biased GVF external force[J]. IEEE Signal Processing Lettters,2010,17( 10) :875-879.

共引文献12

同被引文献26

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部