期刊文献+

非均匀采样条件下光纤陀螺微小角振动信号检测技术 被引量:11

Signal detecting technique of FOG′s micro angle vibration under nonuniform sampling
下载PDF
导出
摘要 航天器在轨运行过程中,由于内部存在多种活动部件,会使结构体产生微小角振动,微小角振动呈现振幅较小、频率较高的特点,微小角振动会造成光学载荷成像质量的下降。光纤陀螺从组成原理上具有宽频带和高灵敏度的特点,能够输出采样周期内的角度增量,可以作为微小角振动测量部件。但是,基于航天器整体时序的综合考虑,无法对光纤陀螺进行均匀采样,提出了非均匀采样条件下的频谱分析方法,将经过非均匀采样得到的整周期时间序列进行傅里叶变换,得到原始信号的幅值和频率,进而实现微小角振动的高精度检测。通过数字仿真和六自由度微振动台试验验证了上述方法的可行性,检测精度优于0.04″。 During the spacecraft′ s in-orbit running, its structure could get a micro angular vibration due to various moving parts inside, which has relatively small amplitude and high frequency and could result in quality reduction of the optical load′ s imaging. With broad bandwidth and high sensitivity, the FOG can output angular increment in a sample cycle, making it the perfect sensor of micro angular vibration.But FOG can′ t be sampled evenly considering the spacecraft ′ s whole scheduling. This paper proposes a frequency spectrum analysis method for nonuniform sampling, which transforms time sequence in a complete nonuniform sampling cycle to the fourier space to obtain original signal ′ s amplitude and frequency so as to achieve high precision measurement of the micro angular vibration. The method has a precision better than 0.04″, which was validated by digital simulation and 6-DOF micro vibration test.
出处 《红外与激光工程》 EI CSCD 北大核心 2016年第3期267-271,共5页 Infrared and Laser Engineering
基金 总装"十二五"预研项目(30106)
关键词 微小角振动 光纤陀螺 非均匀采样 频谱分析 micro angle vibration FOG nonuniform sampling frequency spectrum analysis
  • 相关文献

参考文献9

二级参考文献37

  • 1李安,王殊,程卓,胡富平.基于非均匀采样的空间谱估计[J].微电子学与计算机,2009,26(2):76-79. 被引量:2
  • 2汪安民,王殊,陈明欣.一种非均匀采样下小信号的检测方法[J].信号处理,2004,20(5):436-440. 被引量:5
  • 3TAO Ran,DENG Bing,WANG Yue.Research progress of the fractional Fourier transform in signal processing[J].Science in China(Series F),2006,49(1):1-25. 被引量:100
  • 4C. E. Shannon, Communication in the presence of noise. Proc. IRE,Vol. 37 ,pp. 10 - 21 ,Jan. 1949.
  • 5Ramam Venkataramani, Yoram Bresler. Optimal Sub- Nyquist Nonuniform Sampling and Reconstruction for Muhiband Signals. IEEE Trans. on Signal Processing, vol. 49,2301 - 2313 No. lO,Oct. ,2001.
  • 6F. Papenfuβ, Y. Artyukh, E. Boole. Optimal Sampling Functions in Nonuniform Sampling Drive Designs to Overcome .the Nyquist Limit. IEEE ICASSP2003 VI 257- 260.
  • 7Daniel Seidner, Meir Feder. Noise Amplification of Periodic Nonuniform Sampling. IEEE Trans. on Signal Processing, vol. 48,275 - 277 No. 1 ,Jan. ,2000.
  • 8Arye Nehorai. A Minimal Parameter Adaptive Notch Filter With Constrained Poles and Zeros. IEEE Trans. on ASPP. 1985,33 (4) :983 - 996.
  • 9Raman Venkataramani, Yoram Bresler. Perfect Reconstruction Formulas and Bounds on Aliasing Error in Sub- Nyquist Nonuniform Sampling of Multiband Signals. IEEE Trans. on Information Theory, vol. 46,2173 - 2183 No. 6, Sept. ,2000.
  • 10P. Vaidyanathan, V. Liu. Efficient recosntruction of bandlimited sequences from nonuniformly decimated versions by use of polyphase filter bands. IEEE Trans. Acoust. ,Speech, Signal Processing ,vol. 38,1927 ~ 1936, Nov. 1990.

共引文献10

同被引文献119

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部