期刊文献+

Sel’kov模型正稳态解的唯一性 被引量:1

Uniqueness of Positive Stationary Solutions for Sel'kov Model
下载PDF
导出
摘要 考虑具Neumann边界条件的Sel’kov模型正稳态解的唯一性,先通过建立一个新的积分恒等式,证明了当0<p≤1时该问题仅有一个正解,再借助先验估计方法,讨论该问题当p>1时正解的唯一性. This paper dealt with the uniqueness of positive stationary solutions for Sel 'kov model with Neumann boundary conditions. Firstly,we established a new integral identity,which proved that there was only one positive solution to the problem for 0 p ≤ 1. Secondly,we discussed the uniqueness of positive solutions for the problem with p1〉 by means of a priori estimate technique.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第2期287-290,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11571062) 辽宁省高等学校杰出青年学者成长计划项目(批准号:LJQ2013124) 中央高校基本科研业务费专项基金(批准号:DC201502050202)
关键词 Sel’kov模型 正稳态解 唯一性 Sel'kov model positive stationary solution uniqueness
  • 相关文献

参考文献15

  • 1Sel'kov E E. Self-Oscillations in Glycolysis[J]. EuropeanJ Biochern , 1968. 4(1): 79-86.
  • 2Scott S K. Gray P. Chemical Reactions in Isothermal Systems: Oscillations and Instabilities[C]/ /Nonlinear Phenomena and Chaos. Hilger. Bristol: Malvern Phys Ser , 1986: 70-95.
  • 3MurryJ D. Mathematical Biology[M]. 2nd ed. Berlin: Springer. 1993.
  • 4FurterJ E. EilbeckJ C. Analysis of Bifurcation in Reaction-Diffusion Systems with No-flux Boundary Conditions: The Sel' kov Model[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 1995, 125 (2) : 413-438.
  • 5Lopez-GornezJ, EilbeckJ C, Molina M, et al. Structure of Solution Manifolds in a Strongly Coupled Elliptic System[J]. IMAJournal of Numerical Analysis. 1992, 12(3): 405-428.
  • 6CameronJ M. Spectral Collocation and Path-Following Methods for Reaction-Diffusion Equations in One and Two Space Dimensions[D]. Edinburgh: Heriot-Watt University, 1994.
  • 7Davidson F A, Rynne B P. A Priori Bounds and Global Existence of Solutions of the Steady-State Sel'kov Model[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2000, 130(3): 507-516.
  • 8WANG Mingxin. Non-constant Positive Steady States of the Sel' kov Model[J].Journal of Differential Equations, 2003, 190(2): 600-620.
  • 9Lieberman G M. Bounds for the Steady-State Sel' kov Model for Arbitrary p in Any Number of Dimensions[J]. SIAMJournal on Mathematical Analysis, 2005, 36 (5): 1400-1406.
  • 10PENG Rui. Qualitative Analysis of Steady States to the Sel'kov Model[J].Journal of Differential Equations, 2007, 24H2): 386-398.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部