期刊文献+

基于关键参数反馈的神经元放电模式控制 被引量:1

Neurons Firing Mode Control Based on Key Parameters Feedback
下载PDF
导出
摘要 针对神经元数学模型中相关参数的异常变化问题,先通过无迹Kalman滤波器(unscented Kalman filter)对这些关键参数进行实时估计,再使用这些参数作为控制器的反馈信号完成神经元放电的有效闭环控制.使用该方法对Pinsky-Rinzel(PR)神经元由于关键参数(胞体和树突间的电导gc及树突刺激电流Ic)的病变导致的异常放电进行MATLAB仿真控制,分别实现了单参数病变及两个参数同时病变引起的异常放电控制.实验结果证明了该方法的有效性. Aiming at the problem of the abnormal change of the related parameters in the mathematical model of neuron,we first made a real time estimation of these key parameters by unscented Kalman filter( UKF),and then took these parameters as feedback signal of the controller to complete closed loop control of the neuron discharge. With this method,the MATLAB simulation was carried out for the abnormal discharge caused by the key parameters( the conductance between cell bodies and dendrites gc,and the stimulated currents of dendrites Ic) of Pinsky-Rinzel( PR) neuron,and the control of abnormal discharge caused by single parameter and two parameters were achieved respectively. The experimental results show the proposed method is effective.
作者 王海洋 王江
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第2期315-322,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金青年基金(批准号:50707020 50907044 60901035) 吉林省自然科学基金(批准号:20130101170JC) 吉林省教育厅"十二五"科学技术研究项目(批准号:2014404)
关键词 闭环控制 参数估计 慢变量 关键参数 closed loop control estimate of parameter slow variable key parameters
  • 相关文献

参考文献16

  • 1Belair }, Glass L. Heiden V D. et al. Dynamical Disease: Mathematical Analysis of Human Illness[M]. Woodbury: American Institute of Physics Press, 1995.
  • 2Gowers W R. A Manual of Diseases of the Nervous System[J].Journal of Nervous &. Mental Disease, 1887, 14(2): 123-125.
  • 3Bear M F. Connors B W. Paradiso M A. Neural Science: Exploring the Brain[M]. Philadelphia: Lippincott Williams &. Wilkins. 2006.
  • 4Park E H. Barreto E. Gluckman BJ. et al. A Model of the Effects of Applied Electric Fields on Neuronal Synchronization[J].Journal of Computational Neuroscience, 2005. 19(1): 53-70.
  • 5J ulier SJ, UhlmannJ K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 6Young L R. Optimal Estimator Models for Spatial Orientation and Vestibular Nystagmus[J]. Experimental Brain Research, 2011, 210(3): 465-476.
  • 7Schiff SJ. Sauer T. Kalman Filter Control of a Model of Spatiotemporal Cortical Dynamics[J]. BMC Neuroscience, 2008, 5(1): 1-8.
  • 8Ullah G. Schiff SJ. Tracking Neuronal Dynamics during Seizures[J]. BMC Neuroscience, 2010, 11(Suppl 1): 1-2.
  • 9Ullah G. Schif SJ. Tracking and Control of Neuronal Hodgkin-Huxley Dynamics[J]. Phys Rev E Stat Nonlin Soft Matter Phys , 2009, 79: 040901.
  • 10Ullah G, CressmanJ R. Ir , Barreto E. et al. The Influence of Sodium and Potassium Dynamics on Excitability, Seizures, and the Stability of Persistent States: II. Network and Glial Dynamics[J].Journal of Computational Neuroscience. 2009, 26(2): 171-183.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部