期刊文献+

基于压缩感知和NSCT-PCNN的PET/CT医学图像融合算法 被引量:11

PET / CT Medical Image Fusion Algorithm Based on Compressive Sensing and NSCT-PCNN
下载PDF
导出
摘要 针对非下采样Contourlet变换(NSCT)后计算复杂度高以及医学融合图像质量差等问题,提出一种基于压缩感知和脉冲耦合神经网(PCNN)的图像融合方法。首先将源图像进行NSCT单层分解;其次,对计算量较大的高频子带采用高斯随机测量矩阵进行压缩测量,融合规则选用绝对值取大的方法,对融合后的高频图像采用正交匹配追踪算法(OMP)进行重构;然后对低频子带采用基于PCNN的融合规则,将低频子带系数作为信号激励PCNN网络,根据低频图像的特性选择较大点火次数的系数作为低频子带融合系数;最后对高频融合图像和低频融合图像通过NSCT逆变换,得到最终的融合图像。实验结果表明:该算法无论从人眼视觉效果还是客观评价指标上均优于其他算法,且具有较强的鲁棒性。 For the high computation complexity and poor medical fusion images under non-subs ampled contourlet transform( NSCT),a method of image fusion based on compressed sensing and PCNN was proposed. Firstly,the source images were decomposed in monolayer with NSCT. Secondly,the Gauss random matrix in high frequency which has large calculation was used for compression measure-ment,and a method based on maximum value was utilized to fuse the high-frequency components respectively. High frequency measurement was reconstructed using the orthogonal matching pursuit( OMP) method after fusion. Third,a fusion rule based on PCNN was adopt in low frequency subband coefficient,and it was input into PCNN network as the signal,and we chose the bigger ignition frequency coefficient as the fusion low-frequency subband coefficients according to the characteristics of low frequency images. Finally,the final fusion image was acquired through the NSCT inverse transformation. The experiment results show that the proposed algorithm is superior to other algorithms in both the visual effect and the objective evaluation index,and it has strong robustness.
出处 《重庆理工大学学报(自然科学)》 CAS 2016年第2期101-108,共8页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(81160183 61561040) 宁夏自然科学基金资助项目(NZ12179 NZ14085) 宁夏高等学校科研项目(NGY2013062)
关键词 压缩感知 非下采样CONTOURLET变换 PCNN PET/CT 医学图像融合 compressed sensing non-subsampled contourlet transform PCNN PET/CT medical image fusion
  • 相关文献

参考文献20

二级参考文献123

  • 1王刚,王娟,王德华,张志峰,肖亮,贺安之.基于Contourlet变换域统计模型的路面图像去噪算法[J].光电子.激光,2009,20(10):1394-1398. 被引量:2
  • 2李颖宏,熊昌镇,尹怡欣,刘亚利.一种基于边缘高斯混合模型的运动目标检测方法[J].系统仿真学报,2009,21(S1):72-74. 被引量:6
  • 3肖伟,汪荣峰.基于非下采样contourlet变换与脉冲耦合神经网络的图像融合算法[J].计算机应用,2008,28(S2):164-167. 被引量:4
  • 4Donoho D L. Compressed sensing [J].IEEE Transactions on Information Theory, 2006, 52 (4) : 1 289-1 306.
  • 5Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging[J].Proceedings of the IEEE, 2010, 98(6) : 1 006-1 020.
  • 6Guerqiain-Kern M, Haberlin M, Pruessmann K P, et al. A fast wavelet-based reconstruction method for magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(9) : 1 649-1 660.
  • 7Paredes J L, Arce G R. Compressive sensing signal reconstruction by weighted median regression estimates[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2 585-2 601.
  • 8Griffin A, Hirvonen T, Tzagkarakis C, et al. Single- channel and multi-channel sinusoidal audio coding using compressed sensing[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19 (5) : 1 382-1 395.
  • 9Aharon M, Elad M, Bruckstein A. The K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4 311-4 322.
  • 10Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries [J]. IEEE Transactions on Information Theory, 2008, 54 (5) 2 210-2 219.

共引文献81

同被引文献86

引证文献11

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部