期刊文献+

响应变量缺失下部分线性单指标模型的序列相关性检验

Serial Correlation Test for Partial Linear Single-Index Model with Missing Response Variables
下载PDF
导出
摘要 研究了在响应变量随机缺失下的部分单指标模型的序列相关检验问题。首先采用借补的方法对缺失响应变量进行处理,再运用经验似然方法对残差部分进行序列相关性检验,构造了经验似然比统计量,并证得其为渐近分布。数值模拟结果表明:该检验方法具有较为理想的检验功效。 We considered the serial correlation test for partial linear single-index model with response variables missing at random( MAR). Firstly,we filled in the missing response variables by the imputation method. Then we applied the empirical likelihood method to establish the test statistic,and constructed the ratio statistic of empirical likehood and derive the asymptotic distribution of the statistic. Simulation results indicate that the test method performs well.
出处 《重庆理工大学学报(自然科学)》 CAS 2016年第2期145-151,共7页 Journal of Chongqing University of Technology:Natural Science
基金 重庆理工大学研究生创新基金资助项目(YCX2014234)
关键词 部分单指标模型 缺失数据 随机缺失 经验似然 序列相关性检验 part of single-index model missing data missing at random experience likelihood serial correlation tests
  • 相关文献

参考文献8

  • 1CARROLL R J,FAN J,GUBELS I,et al.Generalized partially linear single-index models[J].Jounmal of the American Statistics Association,1997,92:477-489.
  • 2WANG J L,XUE L G,ZHU L X,et al.estimation for a partially linear single-index models[J].The Annals of Statistics,2010,38(1):246-274.
  • 3杨宜平.协变量随机缺失下线性模型的经验似然推断及其应用[J].数理统计与管理,2011,30(4):655-663. 被引量:10
  • 4ZHANG K K,GONZALEZ R,HUANG B,et al.Expecta- tion maximization approach to fault diagnosis with missing data[J].IEEE Trans-actions on Industrial Electronics,2015,62(2):1231-1240.
  • 5LIU F,CHEN G M,CHEN M.Testing serialcorrelation in partially linear errors-in-variables models based on em- pirical likelihood[J].Communication in Statistics Theory and Methods,2008,37(12):1905-1918.
  • 6LI J B,WANG Y Y,HUANG Z S,et al.Testing serial correlation in single index models[J].Communications in Statistics,2015,44(4):1020-1035.
  • 7高集体,洪圣岩,梁华.部分线性模型中估计的收敛速度[J].数学学报(中文版),1995,38(5):658-669. 被引量:41
  • 8OWEN A B.Empirical likelihood ratio for linear models.[J]Ann Statistics,1991,19:1725-1747.

二级参考文献15

  • 1Wang Q H, Rao J N K. Empirical likelihood-based inference in linear models with missing data [J]. Scand. J. Statist., 2002, 29: 563-576.
  • 2Xue L G. Empirical likelihood confidence intervals for response mean with data missing at random [J]. Scand. J. Statist., 2009, 36:671- 685.
  • 3Xue L G. Empirical likelihood for linear models with missing responses [J]. J. Multivariate Anal., 2009, 100: 1353-1366.
  • 4Liang H, Wang J S, Robins J M, Carroll R J. Estimation in partially linear models with missing covariates [J]. J. Amer. Statis. Assoc., 2004, 99:357- 367.
  • 5Wang Q H. Statistical estilnation in partial linear models with covariate data missing at random [J]. Ann. Ins. Stat. Math., 2009, 61: 47-84.
  • 6Liang H. Generalized partially linear" models with missing covariates [J]. J. Multivariate Anal., 2008, 99: 880-895.
  • 7Owen A B. Empirical likelihood ratio confidence regions [J]. Ann. Statist., 1990, 18: 90-120.
  • 8Robins J M, Rotnitzky A, Zhao L P. Estimation of regression coeNcients when some regressors are not always observed [J]. J. Amer. S1;atist. Assoc., 1994, 89:846 866.
  • 9高集体,Acta Math Sin New Ser,1994年,2卷,256页
  • 10高集体,Chin J Appl Probab Statist,1994年,1卷,96页

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部