期刊文献+

弹性边界条件识别反问题的正则化间接边界元法

Regularized Boundary Element Method with Indirect Unknowns for Inverse Elasticity Problems
下载PDF
导出
摘要 基于间接变量规则化边界元法,对弹性边界条件识别Cauchy反问题进行了研究。对于实施过程中出现的线性病态方程组,采用Tikhonov和TSVD两种正则化方法求解,通过广义交叉校验准则法(GCV法)确定正则化参数。数值算例表明:该算法稳定,数值解与精确解比较吻合。 The elasticity inverse identification boundary conditions Cauchy problem was investigated by using the indirect boundary element method( IBEM). Both the Tikhonov regularization method and the truncated singular value decomposition( TSVD) were applied to solving the ill-conditioned linear system involved in the process of implementation,and the optimal parameter for the Tikhonov and the optimal truncation number for the TSVD were chosen according to the generalized cross validation( GCV) method. A numerical example was given to verify the effectiveness of the proposed scheme,with numerical results being good agreement with the exact solutions.
出处 《重庆理工大学学报(自然科学)》 CAS 2016年第2期152-156,共5页 Journal of Chongqing University of Technology:Natural Science
基金 山东省自然科学基金资助项目(ZR2010AZ003)
关键词 间接边界元法 反问题 正则化方法 广义交叉校验准则法 indirect boundary element method inverse problem regularization method generalized cross validation method
  • 相关文献

参考文献6

二级参考文献20

  • 1张耀明,孙焕纯.弹性薄板弯曲问题的弱奇异边界积分方程[J].大连理工大学学报,1996,36(1):13-19. 被引量:5
  • 2程长征,牛忠荣,周焕林,杨智勇.涂层结构中温度场的边界元法分析[J].合肥工业大学学报(自然科学版),2006,29(3):326-329. 被引量:7
  • 3Marin L,Lesnic D. Boundary element solution for theCauchy problem in linear elasticity using singular value de-composition [J], Computer Methods in Applied Mechanicsand Engineering,2002.191 (29/30) :3257-3270.
  • 4Hansen P C. Rank-deficient and discrete ill-posed problem:numerical aspects of linear inversion [M]. Philadelphia: SI-AM,1998:48~50.
  • 5Marin L, Lesnic D. Regularized boundary element solutionfor an inverse boundary value problem in linear elasticity[J]. Communications in Numerical Methods in Engineering,2002,18(11):817-825.
  • 6Yeih W C,Koya T,Mura T. An inverse problem in elastic-ity with partially overprescribed boundary conditions, partI: theoretical approach [J]. Transactions of the ASME Jour-nal of Applied Mechanics, 1993,60(3) : 595 — 600.
  • 7Koya T. Yeih W C,Mura T. An inverse problem in elastic-ity with partially overprescribed boundary conditions,partII: Numerical details [J]. Transactions of the ASME Journalof Applied Mechanics,1993,60(3) :601 —606.
  • 8Marin L,Elliott L, Ingham D B, et al. Boundary elementmethod for the Cauchy problem in linear elasticity [J]. En-gineering Analysis with Boundary Elements, 2001,25(9):783-793.
  • 9Ellabib A. Nachaoui A. An iterative approach to the solu-tion of an inverse problem in linear elasticity [J]. Mathe-matics and Computers in Simulation, 2008,77 (2/3):189-201.'.
  • 10Hansen P C. Analysis of discrete ill-posed problems bymeans of the L-Curve [J]. SIAM Review, 1992, 34 (4):561-580.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部