期刊文献+

列车组合定位的改进UPF算法探讨 被引量:2

Study on Improved UPF Algorithm to Train Integrated Positioning
下载PDF
导出
摘要 针对传统粒子滤波缺乏当前量测信息、容易出现粒子退化现象、滤波精度不高,难以应用于GNSS/INS列车组合导航的问题,提出了一种改进粒子滤波算法。通过将无迹卡尔曼滤波框架应用到标准粒子滤波中,产生粒子的重要性函数,考虑了当前量测对状态估计的影响,改善了滤波效果。在重采样环节又融入了马尔科夫链蒙特卡洛方法,增加了采样粒子的多样性,提高了滤波的精度。结合采集某列控系统的样本数据进行仿真,结果表明:改进的UPF与传统的UPF相比,滤波效果更好,定位精度更高,在GNSS/INS列车组合定位中有更好的工程使用价值。 In the traditional particle filter,the lack of measurement information is easy to appear the phenomenon of particle degradation,the filtering accuracy is not high,which is difficult to be applied to the GNSS/INS train navigation,thus an improved particle filter algorithm is put forward.By applying unscented Kalman filter framework to standard particle filtering,the importance function of particle is produced.Considering the current measurement of state estimation,the effect of filtering is improved.By integrating the resampling method into the way of Markov Chain Monte Carlo,the diversity of the particle is increased,and the filter precision is improved.The sample data of a certain train control system is simulated.The results show that compared with the traditional UPF,improved UPF has better filtering effect and higher positioning accuracy,the value of the project is better in the combination of GNSS/INS train.
作者 王更生 张翔
出处 《测控技术》 CSCD 2016年第3期132-135,共4页 Measurement & Control Technology
基金 国家自然科学基金资助项目(61461019)
关键词 粒子滤波 列车组合定位 GNSS/INS 建议性分布 马尔可夫链-蒙特卡洛 particle filter train integrated positioning GNSS/INS proposal distribution Markov Chain Monte Carlo
  • 相关文献

参考文献9

二级参考文献49

  • 1莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3杨小军,潘泉,张洪才.基于Monte Carlo方法的自适应多模型诊断[J].控制理论与应用,2005,22(5):723-727. 被引量:4
  • 4王来雄,黄士坦.一种新的粒子滤波算法[J].武汉大学学报(工学版),2006,39(1):118-120. 被引量:15
  • 5Li X R. Multiple-model estimation with variable structure-Part Ⅱ: Model-set adaptation[ J]. IEEE Trans on Automatic Control, 2000,45( 11 ) :2047 - 2060.
  • 6Musicki D, Suvorova S. Tracking in clutter using IMM-IPDA- based algorithms [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2008,44 ( 1 ) : 111 - 126.
  • 7Mallick M, La Scala B F. IMM estimator for ground target tracking with variable measurement sampling intervals[ A]. The 9th International Conference on Information Fusion [ C ]. Florence: IEEE press, 2006,1 - 8.
  • 8Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estimator: when do we need the latter [ J ]. IEEE Trans on Aerospace and Electronic Systems,2003,39(4):1452- 1457.
  • 9Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[ J ]. IEEE Transactions on Signal Processing, 2002,50 (2) :174- 188.
  • 10Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo [ J ]. Proceedings of the IEEE,2007,95(5) :899 - 924.

共引文献45

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部