非自治弱阻尼双曲方程拉回D-吸引子的存在性
Existence of the pullback D-attractors for weakly non-autonomous hyperbolic equations
摘要
利用拉回D-条件(C)的方法证明了弱阻尼双曲方程在H10×L2上的拉回D-吸引子的存在性.
This paper proves the existence of the pullback D - attractors for weakly non - autonomous hyperbolic equations in bounded domains by pullback D -condition(C).
出处
《云南民族大学学报(自然科学版)》
CAS
2016年第2期140-144,168,共6页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金(11101334
11361053)
甘肃省自然科学基金(1107RJZA223)
甘肃省教育厅高校科研业务费
参考文献10
-
1CARABALLO T,LUKASZEWICZ G,REAL J.Pullback attractors for asymptotically compact non-autonomous dynamical sys- tems[J].Nonlinear Analysis:Theory,Methods & Applications,2006,64(3):484-498.
-
2CHEPYZHOY V V,VISHIK M I.Attractors for equations of mathematical physics[M].Providence:American Mathematical So- ciety,2002.
-
3ROBINSON J C.Infinite-dimensional dynamical systems:an introduction to dissipative parabolic PDEs and the theory of global attractors[M].Cambridge University Press,2001.
-
4TEMAM R.Infinite-dimensional dynamical systems in mechanics and physics[M].Springer Science & Business Media,2012.
-
5MA Q,WANG S,ZHONG C.Necessary and sufficient conditions for the existence of global attractors for semigroups and applica- tions[J].Indiana University Mathematics Journal,2002,51(6):1541.
-
6WANG Y.Pullback attractors for nonautonomous wave equations with critical exponent[J].Nonlinear Analysis:Theory,Methods & Applications,2008,68(2);365-376.
-
7MA Q,WANG B.Existence of pullback attractors for the coupled suspension bridge equations[J].Electronic Journal of Differential Equations,2011,2011(16):1-10.
-
8MA S,ZHONG C.The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces[J].Discrete and Continuous Dynamical Systems,2007,18(1):53-70.
-
9WANG Y,ZHONG C.Pullback D-attractors for nonautonomous sine-Gordon equations[J].Nonlinear A- nalysis:Theory,Methods & Applications,2007,67(7):2137-2148.
-
10WANG X,MA Q.Strong uniform attractors for nonautonomous suspension bridge-type equations[J]. Mathematical Problems in Engineering,2012,2012.
-
1查志刚.一类具有弱阻尼的非线性Schrdinger方程组解的局部存在性[J].广东教育学院学报,2010,30(5):46-50.
-
2秦闯亮,林国广.弱阻尼随机Kirchhoff方程的随机吸引子[J].云南大学学报(自然科学版),2010,32(S2):101-108. 被引量:2
-
3黎培德.弱阻尼共振中几个问题的讨论[J].大学物理,1990(3):17-18. 被引量:1
-
4Tao Chen,Sheng-fan Zhou,Cai-di Zhao.Attractors for Discrete Nonlinear Schrdinger Equation with Delay[J].Acta Mathematicae Applicatae Sinica,2010,26(4):633-642. 被引量:9
-
5高平,戴正德.弱阻尼非线性Schrdinger-Boussinesq方程的指数吸引子[J].广西工学院学报,1999,10(2):7-11.
-
6吴书印,赵怡.弱阻尼Schrdinger方程的近似惯性流形族[J].中山大学学报(自然科学版),2001,40(2):10-12. 被引量:1
-
7李体俊.弱阻尼谐振子的波函数[J].西南师范大学学报(自然科学版),2008,33(2):19-21. 被引量:3
-
8周艳,张伟.四边简支矩形薄板的双Hopf分岔分析[J].动力学与控制学报,2017,15(2):106-109.