期刊文献+

基于全局距离和类别信息的邻域保持嵌入算法 被引量:2

A neighborhood preserving embedding algorithm based on global distance and label information
原文传递
导出
摘要 提出一种基于全局距离和类别信息的邻域保持嵌入算法。该方法在使用欧氏距离构造邻域图中,加入表征全局距离的全局因子和表示类别信息的函数项,全局因子可以使分布不均匀的样本变得平滑均匀,类别信息可以使同类样本点紧凑异类样本点疏离,通过提高所选邻近点的质量,优化数据的局部邻域,使降维后的数据具有更好的可分性。试验结果表明,该算法具有较高的准确率,优于传统的邻域保持嵌入算法。 An algorithm of neighborhood preserving embedding based on global distance and label information was proposed. A global factor that characterized the global distance and a function term that characterized the label information were added in the traditional Euclidean distance formula of adjacent graph. Global factor could make unevenly dirtibuted samples smooth and uniform,label information could make intra-class compact and inter-class separable,which improved quality of neighborhood and constructed an optimal adjacency graph,and improved classification accuracy. Experimental results showed that the proposed algorithm had higher accuracy and performed more effective than traditional neighborhood preserving embedding algorithm.
出处 《山东大学学报(工学版)》 CAS 北大核心 2016年第1期10-14,21,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61170145 61373081) 教育部博士点基金资助项目(20113704110001) 山东省自然科学基金资助项目(ZR2010FM021) 山东省科技攻关计划资助项目(2013GGX10125)
关键词 降维 邻域保持嵌入算法 全局距离 类别信息 邻域优化 dimension reduction neighborhood preserving embedding algorithm global distance label information neighborhood optimization
  • 相关文献

参考文献22

  • 1周志华,杨强.机器学习及其应用[M].北京:清华大学出版社,2011.
  • 2EGECIOGLU O, FERHATOAMANOGLU U. Dimensionality reduction and similarity by inner-product approximations [ J ]. IEEE on Knowledge and Data Engineering, 2004, H, OGRAS computation Transactions 16(6) :714-726.
  • 3BELKIN M, NIYOGI P. Laplacian eigenmaps for dimen- sionality reduction and data representation[J ]. Neural Computation, 2003, 15 ( 6 ) : 1373-1396.
  • 4赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 5TENENBAUMe J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000, 290 ( 5500 ) : 2319-2323.
  • 6HUANG Hong, HUANG Yunbiao. Improved discrimi- nant sparsity neighborhood preserving embedding for hy- perspectral image classification [ J ]. Neurocomputing, 2014, 136(2014) :224-234.
  • 7JOLLIFFE I T. Principle component analysis [ M ]. Ber- lin: Springer-Verlag, 1986: 384-389.
  • 8WANG Fei, WANG Xin, ZHANG Daoqiang, et al. MarginFace: A novel face recognition method by average neighborhood margin maximization [ J ] Pattern Recogni- tion, 2009, 42( 11 ) :2863-2875.
  • 9BELHUMEUR P N, HESPANDA J P, KRIEGMAN D I. Eigenfaces vs. fisherfaces: Recognition using class specif- ic linear projection [ J ]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 1997, 19 ( 7 ) : 711-720.
  • 10HE Xiaofei, NIYOGI P. Locality preserving projections [ J]. Advances in Neural Information Processing Sys- tems, 2005, 45(l) :186-197.

二级参考文献33

  • 1Sebastian HS, Lee DD. The manifold ways of perception. Science, 2000,290(12):2268-2269.
  • 2Roweis ST, Saul LK. Nonlinear dimensionality analysis by locally linear embedding. Science, 2000,290(12):2323-2326.
  • 3Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(12) :2319-2323.
  • 4Donoho DL, Grimes C. When does ISOMAP recover the natural parameterization of families of articulated images? Technical Report, 2002-27, Department of Statistics, Stanford University, 2002.
  • 5Donoho DL, Grimes C. Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences, 2003,100(10):5591-5596.
  • 6Zhang CS, Wang J, Zhao NY, Zhang D. Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction. Pattern Recognition, 2004,37(1):325-336.
  • 7Polito M, Perona P. Grouping and dimensionality reduction by locally linear embedding. Neural Inform Process Systems, 2001,1255-1262.
  • 8Lee MD. Determining the dimensionality of multidimensional scaling models for cognitive modeling. Journal of Mathematical Psychology, 2001,45(4):149-166.
  • 9Camastra F. Data dimensionality estimation methods: A survey. Pattern Recognition, 2003,36:2945-2954.
  • 10Liu XW, Srivastavab A, Wang DL. Intrinsic generalization analysis of low dimensional representations. Neural Networks, 2003,16:537-545.

共引文献61

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部