期刊文献+

基于Map/Reduce的时间序列相似性搜索算法 被引量:4

Time series similarity searching algorithm based on Map / Reduce
原文传递
导出
摘要 将并行计算的策略引入到时间序列处理中,提出基于Map/Reduce的时间序列相似性搜索算法,充分利用云计算可进行大规模计算和数据处理的特点,有效降低了时间序列相似性搜索中运算量,简化了计算过程。该算法在心电图数据集上进行相似性搜索,分别进行PAA下界过滤和DTW距离的计算,验证运算时间和并行加速比随节点变化的情况,与传统的单机运算相比,有效地提高了时间序列挖掘效率。 The strategy of parallel computing was introduced into time series processing,and time series similarity searching algorithm based on Map / Reduce was proposed. The proposed algorithm could make use of the features of cloud computing to take large-scale computing and data processing,and could efficiently reduce the large calculation and simplify the computing process of time series similarity searching. The proposed algorithm was adopted on electrocardiograph dataset to complete similarity searching with piecewise aggregate approximation lower bound and dynamic time warping distance,which verified the effect of nodes changing on operation time and parallel speed up. Compared with the traditional one running on single PC,the proposed algorithm improved the efficiency of time series mining effectively.
出处 《山东大学学报(工学版)》 CAS 北大核心 2016年第1期15-21,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金青年科学基金资助项目(61402318) 高等学校博士学科点专项科研基金资助项目(20131402120009) 山西省科技攻关资助项目(20130313012-2) 太原理工大学校青年团队资助项目(2013T049)
关键词 并行计算 时间序列挖掘 相似性搜索 动态时间弯曲距离 下界算法 parallel computing time series mining similarity searching dynamic time warping distance lower bound algorithm
  • 相关文献

参考文献11

二级参考文献142

  • 1赵连翔,王全玉,贾金苗,陆峥玲.机器人云操作平台的实现研究[J].华中科技大学学报(自然科学版),2012,40(S1):161-164. 被引量:9
  • 2张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 3席景科,闫大顺.Web数据挖掘中数据集成问题的研究[J].计算机工程与设计,2006,27(8):1366-1368. 被引量:6
  • 4Hart J,Kamber M.Data mining:concepts and Techniques[M].2nd ed.Beijing:China Machine Press,2007.
  • 5Chen L,Ng R.On the marriage of Lp-norms and edit distance[C]// Proc of the 30th Very Large Data Bases Conference,Toronto,Canada, 2004 : 792-803.
  • 6Keogh E,Pazzani M.A simple dimensionality reduction technique for fast similarity search in large time series databases[C]//Proc of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Current Issues and New Applications,London,UK,2000:122-133.
  • 7Keogh E.Exact indexing of dynamic time warping[C]//Proc of the 28th International Conference on Very, Large Data Bases,Hong Kong,China,2002:406-417.
  • 8Chen L,Ozsu M T,Oria V.Robust and fast similarity search for moving object trajectories[C]//Proc of the 2005 ACM SIGMOD International Conference on Management of Data,Baltimore,Maryland, 2005 : 491-502.
  • 9Vlachos M,Kollios G,Gunopulos D.Discovering similar multidimensional trajectories[C]//Proc of the 18th International Conference on Data Engineering,San Jose,CA,2002:673-684.
  • 10Agrawal R,Faloutsos C,Swami A.Efficient similarity search in sequence databases[C]//Proc of 4th Int Conf of Foundations of Data Organization and Algorithms, London, UK, 1993 : 69-84.

共引文献233

同被引文献49

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部