摘要
研究子图的度和图的哈密尔顿性的关系,证明图G是一个n阶3-连通无爪图且最小度δ(G)≥4,如果图G中任意两个分别同构于P_4,K_1的不相邻子图H_1,H_2满足d(H_1)+d(H_2)≥n,则图G是哈密尔顿连通.
This paper studies the relationship between the degree of subgraphs and Hamiltonicity of graphs.It is proven that every 3-connected claw-free graph G of order n with minimum degree δ(G)≥4 is Hamilton-connected if it satisfies d(H1)+d(H2)≥n for any two non-adjacent subgraphs H_1,H_2 which are isomorphic to P4,K1 respectively.
出处
《运筹学学报》
CSCD
北大核心
2016年第1期112-117,共6页
Operations Research Transactions
基金
国家自然科学基金(No.11171273)
关键词
无爪图
不相邻子图
子图的度
哈密尔顿连通
claw-free graph
non-adjacent subgraph
degree of subgraph
Hamiltonconnected