期刊文献+

非圆信号的DOA与阵列误差参数的联合估计性能界 被引量:1

Cramer-Rao bound of estimations of DOA and sensor errors for noncircular sources
下载PDF
导出
摘要 为了确定非圆信号波达方向(direction-of-arrival,DOA)估计中参数化校正的方差下限,基于阵列误差影响下的随机性非圆信号模型与联合信源时域自相关特性的非圆信号模型,分别推导了DOA参数与阵列误差参数的联合估计克拉美罗界(Cramer-Rao bound,CRB)。通过将推导的非圆性能界与未利用非圆特性的性能界进行对比分析,理论证明了非圆性能界比未利用非圆特性的性能界更低,且两者的差异在低信噪比和大非圆率信号入射的情况下较大。实验结果不仅验证了理论分析的正确性,同时表明信源时域自相关信息有助于进一步提升阵列误差的校正精度。 In order to determine the minimum variance of parameterization calibration for sensor errors are application to direction-of-arrival(DOA)estimation,the expressions of Cramer-Rao bound(CRB)matrices of estimations of DOA and sensor errors are derived based on the stochastic model of noncircular signals and the stochastic model of temporally correlated noncircular signals,respectively.Through the comparisons between the derived CRBs and the CRBs which do not take advantage of the noncircular feature,it is proved that the derived CRBs are lower than the CRBs which do not take advantage of the noncircular feature,and this difference is greater at low signal-to-noise ratio or when the sources have larger circularity rate.The simulation results not only verify the theoretical analysis,but also show that temporal correlation of the sources can enhance the accuracy of calibration.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第4期746-752,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61201381) 信息工程学院未来发展基金(YP12JJ202057)资助课题
关键词 波达方向估计 非圆信号 阵列误差 时域自相关 克拉美罗界 direction-of-arrival(DOA)estimation noncircular signal sensor error temporal correlation Cramer-Rao bound(CRB)
  • 相关文献

参考文献14

二级参考文献64

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报,1996,24(3):47-52. 被引量:74
  • 3杨志伟,廖桂生.基于最小二乘的阵元位置误差校正及性能分析[J].系统工程与电子技术,2007,29(2):167-169. 被引量:5
  • 4Yin Q Y, Newcomb R, Zou L H. Estimation of 2-D angles of arrival via parallel linear arrays[C]. Proceedings of IEEE ICASSP,Glasgow, Scotland, 1989: 2803-2806.
  • 5Hua Y B, Sarkar T K, Weiner D D. An L-shaped array for estimating 2-D directions of wave arrival[J]. IEEE Trans. on AP,1991, 39(2): 143-146.
  • 6Zoltowski M D, Wong K T. Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid[J]. IEEE Trans. on SP, 2000,48(8): 2205-2210.
  • 7Swindlehurst A L, Stoica P, Jansson M. Exploiting arrays with multiple invariances using MUSIC and MODE[J]. IEEE Trans.on SP, 2001, 49(11): 2511-2521.
  • 8Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm[J]. IEEE Trans. on SP, 1994,42(6): 1519-1526.
  • 9Yeh C, Leou M, Ucci D R. Bearing estimations with mutual coupling present[J]. IEEE Trans. on AR 1989, 37(10):1332-1335.
  • 10Dandekar K R, Ling H. Experimental study of mutual coupling compensation in smart antenna applications. IEEE Trans.Wireless Communication, 2002, 1(3): 480-487.

共引文献30

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部