期刊文献+

基于改进三线性分解的单基地十字阵MIMO雷达二维角度估计 被引量:1

Two-dimensional angle estimation for monostic cross MIMO radar using improved trilinear decomposition algorithm
下载PDF
导出
摘要 研究单基地十字阵多输入多输出(multiple-input multiple-output,MIMO)雷达中目标二维角度参数估计的问题。已有的算法往往忽略了信源矩阵中的类Vandermonde结构,而这种特殊的结构可以提升参数估计精度。基于均匀线形阵列(uniform linear array,ULA)的中心对称特性和目标参数矩阵中的类Vandermonde结构,提出一种基于改进的三线性分解的二维角度估计算法。首先利用酉变换的方法构造阵列增广输出矩阵,再将二维角度估计与三线性模型相联系。由于增广输出使得阵列的虚拟孔径增大,因而本文所提算法的参数估计精度要优于传统三线性估计算法。此外,本文提及的改进算法不需进行谱峰搜索及奇异值分解,并且能对估计的二维目标角度自动配对,最后的仿真结果验证了本文算法的有效性。 This research stresses the problem of the two-dimensional angle estimation in monostic cross multiple-input multiple-output(MIMO)radar.Parameters estimation accuracy could be improved with the Vandermonde-like structure in the source matrix,which is always ignored by existing estimation algorithms.With the centrosymmetric of the uniform linear array(ULA)and the Vandermonde-like structure of the data model,an improved trilinear decomposition algorithm is proposed for the two-dimensional angle estimation.The unitary transform is used to construct an expand data matrix,and the two-dimensional angle estimation is then linked to the trilinear model.Due to the expand output,the virtual aperture of the array is increased,hence the proposed trilinear algorithm performs better than the traditional trilinear algorithm.In addition,the proposed algorithm requires neither peak searching nor eigenvalue decomposition.Furthermore,the proposed algorithm could achieve automatic pairing of the two-dimensional angle.Simulation results verify the effectiveness of the proposed algorithm.
作者 杨康 贾爱梅
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第4期804-811,共8页 Systems Engineering and Electronics
基金 国家空管科研项目(GKG201402001)资助课题
关键词 多输入多输出雷达 二维角度估计 酉变换 三线性分解 multiple-input multiple-output(MIMO)radar two-dimensional angle estimation unitary transform trilinear decomposition
  • 相关文献

参考文献21

  • 1Fishler E, Haimovich A, Blum R, et al, MIMO radar: an idea whose time has eomeEC]//Proc, of the IEEE Radar Conference, 2004:71 - 78.
  • 2何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析[J].电子学报,2005,33(B12):2441-2445. 被引量:97
  • 3谢荣,刘峥,刘韵佛.基于L型阵列MIMO雷达的多目标分辨和定位[J].系统工程与电子技术,2010,32(1):49-52. 被引量:12
  • 4Jian L, Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5) ~ 106 - 114.
  • 5Zhang X, Huang Y, Chen C, et al. Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar[J]. IET Radar, Sonar & Navigation, 2012, 6 (8): 796-801.
  • 6Zheng Z D, Zhang J Y. Fast method for multi-target localisation in histatic MIMO radar[J]. Electronics Letters, 2011,47 (2) ~ 138 - 139.
  • 7Duofang C, Baixiao C, Guodong Q, et al. Angle estimation u sing ESPRIT in MIMO radar[J]. Electronics Letters, 2008, 44(12): 770 - 771.
  • 8Jinli C, Hong G, Weimin S. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44 (24) : 1422- 1423.
  • 9Li J, Zhang X. Unitary reduced-dimensional estimation of signal parameters via rotational invariance techniques for angle estima- tion in monostatic multiple-input-multiple-output radar with rec- tangular arrays[J]. IET Radar , Sonar & Navigation, 2014, 8 (6), 575 - 584.
  • 10Sidiropoulos N D, Giannakis G B, Bro R. Blind PARAFAC re ceivers for DS-CDMA systems [J]. IEEE Trans. on Signal Processing, 2000, 48(3): 810- 823.

二级参考文献72

  • 1保铮,张庆文.一种新型的米波雷达──综合脉冲与孔径雷达[J].现代雷达,1995,17(1):1-13. 被引量:57
  • 2Fishler E, Haimovieh A, Blum R, et al. MIMO radar: an idea whose time has come[C]//Proc, of IEEE Radar Conference, 2004:71 - 78.
  • 3Fishler E, Haimovieh A, Blum R, et al. Spatial diversity in radars models and detection performance[J]. IEEE Trans. on Signal Processing, 2006,54 (3) : 823 - 838.
  • 4Xu Luzhou, Li Jian, Stoica P. Adaptive techniques for MIMO radar[C]//4th IEEE Workshop Sensor Array Multi-Channel Processing, 2006: 258 - 262.
  • 5Li Jian, Stoica P, Xie Yao. On probing signal design for MIMO radar[C]//40th Asilomar Conference on Signals, Systems and Computers, 2006.
  • 6Bekkerman I, Tabrikian J. Target detection and localization using mimo radars and sonars[J].IEEE Trans. on Signal Processing,2006,54(10) :3873 - 3883.
  • 7Cheng Q, Hua Y. Further study of the pencil-MUSIC algorithm[J].IFEE Trans. on Aerospace Electronic Systems, 1996,32 (1) : 284 - 299.
  • 8Capon J. High resolution frequency-wave number spectrum analysis[C]//Proc, of the IEEE, 1969,57 : 1408 - 1418.
  • 9Kay S M. Fundamentals of statistical signal processing: estimation theory[M]. Englewood Cliffs : Prentice Hall, 1998.
  • 10Fisher E, Haimovich A, and Blum R S, et al.. Spatial diversity in radar-models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823-838.

共引文献144

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部