期刊文献+

具有N-S磁极效应的最大间隔模糊分类器 被引量:1

Maximum Margin Fuzzy Classifier with N-S Magnetic Pole Effect
下载PDF
导出
摘要 该文提出一种具有N-S磁极效应的最大间隔模糊分类器(MPMMFC)。该方法寻求一个具有N-S磁极效应的最优超平面,使得一类样本受磁极吸引离超平面尽可能近,另一类样本受磁极排斥离超平面尽可能远。针对传统支持向量机面临的对噪声和野点敏感问题,引入模糊技术来降低噪声和野点对分类的影响,从而进一步提高泛化性能和分类效率。通过人工数据集和实际数据集上的实验,证明了MPMMFC的有效性。 Inspired by space geometry and magnetic pole effect theory, a maximum margin fuzzy classifier with N-S magnetic pole(MPMMFC) is proposed in this paper. The main idea is to find an optimal hyperplane based on N-S magnetic pole effect in order to ensure that the distance between one class and the hyperplane is much closer due to pole attractive and the distance between the other class and the hyperplane is much greater due to repulsion. Moreover, due to the traditional support vector machine(SVM) sensitive to noises and outliers, a fuzzy technology is introduced in this paper to reduce the influence of noises and outliers, and the classification efficiencies and generalization performance are improved further. Experimental results on the synthetic datasets and UCI datasets show that the proposed approaches are effective.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第2期227-232,239,共7页 Journal of University of Electronic Science and Technology of China
基金 国家社科基金后期资助项目(15FTQ008)
关键词 模糊技术 核方法 磁极效应 模式分类 fuzzy technology kernel method magnetic pole pattern classification
  • 相关文献

参考文献14

  • 1KOBY C,MEHRYAR M,FEMANDO P.Gaussian margin machines[C]//Proceedings of the 12th International Conference on Artificial Intelligence and Statistics.Clearwater Beach Florida:Journal of Machine Learning Research,2009,5:105-112.
  • 2VAPNIK V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 3SCHOLKOPF B,SMOLA A,BARTLET P.New support vector algorithms[J].Neural Computation,2000,12(5):1207-1245.
  • 4SCHOLKOPF B,SMOLA A .Learning with kernels[M].Cambridge:MIT,2002.
  • 5TAX D M J,DUIN R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.
  • 6LIN C F,WAN S D.Fuzzy support vector machine[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
  • 7SHIVASWAMY P K,JEBARA T.Maximum relative margin and data-dependent regularization[J].Journal of Machine Learning Research,2010,11(2):747-788.
  • 8陶剑文,王士同.大间隔最小压缩包含球学习机[J].软件学报,2012,23(6):1458-1471. 被引量:1
  • 9刘忠宝,王士同.基于熵理论和核密度估计的最大间隔学习机[J].电子与信息学报,2011,33(9):2187-2191. 被引量:3
  • 10WU Ming-rui,YE Jie-ping.A small sphere and large margin approach for novelty detection using training data with outliners[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(11):2088-2092.

二级参考文献19

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995: 123-167.
  • 3Pal M and Foody G M. Feature selection for classification of hyper spectral data by SVM [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2297-2307.
  • 4Scholkopf B, Smola A, and Bartlet P. New support vector algorithms [J]. Neural Computation, 2000, 12(5): 1207-1245.
  • 5Scholkopf B, Platt J, Shawe-Taylor J, et al.. Estimating the support of high-dimensional distribution [J]. Neural Computation, 2001, 13(7): 1443-1471.
  • 6Tax D M J and Duin R P W. Support vector data description [J]. Machine Learning, 2004, 54(1): 45-66.
  • 7Tsang I W, Kwok J T, and Cheung P M. Core vector machines: fast SVM training on very large data sets [J]. Journal of Machine Learning Research, 2005, 6(4): 363-392.
  • 8Suykens J A and Vandewalle J. Least squares support vector machines classifiers [J]. Neural Processing Letters, 1999, 19(3): 293-300.
  • 9Mangasarian 0 and Musicant D. Lagrangian support vector machines [J]. Journal of Machine Learning Research, 2001, 1(3): 161-177.
  • 10Lee Y J and Mangasarian O. SSVM: a smooth support vector machines [J]. Computational Optimization and Applications, 2001, 20(1): 5-22.

共引文献89

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部