期刊文献+

结合特征点匹配及深度网络检测的运动跟踪 被引量:1

Object Tracking by Combining Feature Correspondences Matching with Deep Neural Network Detection
下载PDF
导出
摘要 通过样本学习得到的目标先验视觉信息可以对目标进行高效表示,在目标跟踪中通过充分利用这些先验知识提高跟踪精度。基于此,提出一种利用离线训练结果进行在线跟踪的算法,首先利用深度神经网络通过样本学习目标的视觉先验,然后跟踪在贝叶斯推理框架下进行,在跟踪过程中将目标视觉先验用作目标的外观表示,跟踪结果由粒子滤波顺序得到。为了防止跟踪漂移,通过特征点匹配建立系统的状态模型,并且将目标分解成子目标进行相似度量,提高算法抗局部遮挡能力。在多个公开测试集上实验表明,该算法可以提高目标跟踪精度,防止跟踪漂移,实现长序列可靠跟踪。 Visual prior which learns from generic real-world images can precisely represent objects, and the tracking results can be improved by exploiting the learned visual prior. Motivated by this, we propose an algorithm that transfers visual prior offline for online object tracking. First, we train a deep neural network to learn generic image features. Then, tracking is carried out within a Bayesian inference framework, in which the learned classifier is used to construct the observation model and a particle filter is used to estimate the tracking result sequentially. To avoid tracking drift, the state model is estimated by matched scale-invariant feature transform(SIFT) feature correspondences, and the object is divided into some sub-objects for tracking to enhance the robust while partial occlusions occur. The experiment results on some benchmark video sequences show that the proposed algorithm can improve the tracking precision, and prevent track failure to achieve robust long sequences tracking.
作者 陈姝 梁文章
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第2期246-251,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61100139 61040009)
关键词 深度学习 特征匹配 目标跟踪 粒子滤波 稀疏编码 deep learning feature matching object tracking particle filter sparse coding
  • 相关文献

参考文献15

  • 1ROSS D,LIM J,LIN R,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(1):125-141.
  • 2ZHANG T,GHANEM B,LIU S,et al.Low-rank sparse learning for robust visual tracking[C]//European Conference on Computer Vision.Firenze,Italy:Springer-Verlag,2012.
  • 3BAO C,WU Y,LING H,et al.Real time robust L1 tracker using accelerated proximal gradient approach[C]//IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI,USA:IEEE,2012.
  • 4MEI X,LING H.Robust visual tracking using l1 minimization[C]//IEEE International Conference on Computer Vision.Kyoto,Japan:IEEE,2009.
  • 5WANG Q,CHEN F,YANG J,et al.Transferring visual prior for online object tracking[J].IEEE Transactions on Image Processing,2012,21(7):3296-3305.
  • 6GRABNER H,GRABNER M,BISCHOF H.Real-time tracking via on-line boosting[C]//British Machine Vision Conference.Edinburgh,UK:Springer-Verlag,2006.
  • 7BABENKO B,YANG M,BELONGIE S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632.
  • 8KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[C]//Conference on Neural Information Processing Systems.Lake Tahoe,Nevada:MIT,2012.
  • 9郑胤,陈权崎,章毓晋.深度学习及其在目标和行为识别中的新进展[J].中国图象图形学报,2014,19(2):175-184. 被引量:147
  • 10李帅,许悦雷,马时平,倪嘉成,史鹤欢.一种深度神经网络SAR遮挡目标识别方法[J].西安电子科技大学学报,2015,42(3):154-160. 被引量:11

二级参考文献55

  • 1胡利平,刘宏伟,吴顺君.一种新的SAR图像目标识别预处理方法[J].西安电子科技大学学报,2007,34(5):733-737. 被引量:20
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints[J].{H}International Journal of Computer Vision,2004,(2):91-110.
  • 3Dalal N,Triggs B. Histograms of oriented gradients for human detection[A].San Diego,CA,USA:IEEE,2005.886-893.
  • 4Ojala T,Pietikainen M,Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[A].Jerusalem,Irsael:IEEE,1994.582-585.
  • 5Matas J,Chum O,Urban M. Robust wide-baseline stereo from maximally stable extremal regions[J].{H}IMAGE AND VISION COMPUTING,2004,(10):761-767.
  • 6Hinton G E,Osindero S,Teh Y W. A fast learning algorithm for deep belief nets[J].{H}Neural Computation,2006,(7):1527-1554.
  • 7Hinton G E. Learning multiple layers of representation[J].{H}Trends in Cognitive Sciences,2007,(10):428-434.
  • 8Hinton G E,Zemel R S. Autoencoders,minimum description length,and Helmholtz free energy[A].Burlington,USA:Morgan Kaufmann,1994.3-10.
  • 9Rumelhart D E,Hinton G E,Williams R J. Learning Representations by Back-Propagating Errors[M].Cogmitive Modeling:MIT Press,2002.213.
  • 10Vincent P,Larochelle H,Bengio Y. Extracting and composing robust features with denoising autoencoders[A].New York,NY,USA:ACM,2008.1096-1103.

共引文献156

同被引文献18

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部