期刊文献+

基于灰度共生的多线索目标联合优化跟踪

Object Joint Optimization Tracking Based on Gray-Level Co-Occurrence and Multi-Clues
下载PDF
导出
摘要 为了提高跟踪算法对多种目标表观变化场景的自适应能力与跟踪精度,提出一种基于灰度共生的多线索目标联合优化跟踪算法。该算法首先提取目标灰度信息,通过灰度共生的高区分度特征对目标进行二元超分描述,结合三阶张量理论融合目标区域的多视图信息,建立起目标的三维在线表观模型,然后利用线性空间理论对表观模型进行双线性展开,通过双线性空间的增量学习更新,降低模型更新时的运算量。通过二级联合跟踪机制对跟踪估计进行动态调整,以避免误差累积出现跟踪漂移。与典型算法进行多场景试验对比,表明该算法能有效地应对多种复杂场景下的运动目标跟踪。 In order to improve the stability of the object tracking under different conditions, an object tracking algorithm is proposed. First, the algorithm extracts the gray information of target to describe the two high discrimination features of target by gray-level co-occurrence matrix, the dynamic information about target changing is fused by third-order tensor theory, the three-dimensional online appearance model of the object is constructed. Then, bilinear space theory is used to expand the appearance model, implement the incremental learning of model updating, and reduce the computation of the model updating. The secondary combined stable tracking of object is achieved by dynamic matching of two observation models. Experimental results indicate that the proposed algorithm can effectively deal with the moving object tracking on a variety of challenging scenes.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第2期252-257,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61501470)
关键词 灰度共生 线性空间 多线索 三阶张量 gray-level co-occurrence linear space multi-clues third-order tensor
  • 相关文献

参考文献12

  • 1YANG H,SHAO L,ZHENG F,et al.Recent advances and trends in visual tracking:A review[J].Neurocomputing,2011,74(18):3823-3831.
  • 2HO J,LEE K C,YANG M H,et al.Visual tracking using learned linear subspaces[C]//Proceedingsof IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2012.
  • 3LEE K C,KRIEGMAN D.Online learning of probabilistic appearance manifolds for video-based recognition and tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2013.
  • 4ROSS D,LIM J,LIN R S,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2013,77(1-3):125-141.
  • 5LATHAUWER L,MOOR B,VANDEWALLE J.On the best rank-1 and rank-(R1,R2,...,Rn) approximation fhigherorder tensors[J].SIAM Journal of Matrix Analysis and Applications,2000,21(4):1324-1342.
  • 6LI X,HU W,ZHANG Z,et al.Visual tracking via incremental Log-Euclidean Riemannian sub-space learning [C]//IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2013.
  • 7LI X,HU W,ZHANG Z,et al.Robust visual tracking based on incremental tensor subspace learning[C]//International Conference on Computer Vision.[S.l.]:[s.n.],2012.
  • 8薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 9CLAUSI D A,HUANG D.Design-based texture feature fusion using Gabor filters and co-occurrence probabilities[J].IEEE Trans on Image Processing,2013,14(7):925-936.
  • 10WU Y,LIM J,YANG M H.Object tracking benchmark[J].Pattern Analysis and Machine Intelligence,2015,37(9):1834-1848.

二级参考文献11

  • 1J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.
  • 2N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842.
  • 3Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581.
  • 4Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999.
  • 5S C Liew,H Lim,L K Kwoh,G K Tay.Texture analysis of SAR images[A].IEEE 1995 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′1995)[C].Firenze,Italy,1995,2:1412-1414.
  • 6Robert M Haralick,K Shanmugam,Its′hak Dinstein.Texture features for image classification[J].IEEE Trans on Systems,Man and Cybernetics,1973,3(6):610-621.
  • 7Dutra LV,R Huber.Feature extraction and selection for ERS-1/2 InSAR classification[J].International Journal of Remote Sensing,1999,20(5):993-1016.
  • 8Leen-Kiat Soh,Costas tsatsoulis.Segmentation of satellite imagery of natural scenes using data mining[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):1086-1099.
  • 9John R Smith,Shih-Fu Chang.Automated binary texture feature sets for image retrieval[A].IEEE International.Conference on Acoustics,Speech,and Signal Processing[C].Atlanta,GA,USA,1996,4:2239-2242.
  • 10Robert M.Haralick K.Shanmugam,Its'hak Dinstein.Texture features for image classification[J].IEEE Trans On Sys,Man,and Cyb,1973,SMC-3(6):610-621.

共引文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部