期刊文献+

基于局部特征的三维人脸识别 被引量:1

3D Face Recognition Based on Local Feature
下载PDF
导出
摘要 Shape Index和曲度用于构造局部特征,并运用于三维人脸识别中。这种局部特征的提取方法用于人脸识别,不需要预先进行对齐处理,而且对有遮挡的人脸数据具有相对较好的识别效果。这里,局部特征提取的主要步骤如下:在不同的尺度上对三维人脸上的关键点进行检测;再对检测到的关键点确定主方向,然后根据主方向构造关键点在某一邻域内的特征向量。实验所用数据库是Bosphorus Database,是Bogazici大学采集的三维人脸数据库。 Shape Index and curvature is used to construct the local characteristics, and applied to 3D face recognition. This kind of local feature extraction method for face recognition, don't need to align in advance, and also have relatively good recognition rate under external occlusion. Here, the main steps of local feature extraction are as follows: Firstly, test the key points of the three dimensional person face in different scales; After that, determine the reference direction of the key point, then construct a feature vector of key point within a neighbor according to the reference direction. Experiment data is come from Bosphorus Database collected by the researchers of the University of Bogazici.
出处 《现代计算机》 2016年第4期33-38,共6页 Modern Computer
基金 国家自然基金项目(No.61173116) 上海市科学技术委员会项目(No.14JC1402203)
关键词 三维人脸识别 局部特征 SHAPE INDEX 3D Face Recognition Local Feature Shape Index
  • 相关文献

参考文献24

  • 1Galtonf. Numeralised Profiles for Classification and Recognition[J]. Nature, 1910, 83(2109):127-130.
  • 2Lee J C, Milios E. Matching Range Images of Human Face[C]. Computer Vision, 1990. Proceedings, Third International Conference On. IEEE, 1990: 722-726.
  • 3Nagamine T, Uemura T, Masuda I. 3D Facial Image Analysis For Human Identification[C] Pattern Recognition, 1992. Vol. I. Confer- ence A: Computer Vision and Applications, Proceedings. 1 lth IAPR International Conference On. IEEE, 1992: 324-327.
  • 4M. Ana Belen, S. ~Ngel, V. Josl~ Fco Et A1. Face Recognition Using 3D Local Geometrical Features: PCA Vs. SVM , Image and Signal Processing And Analysis, 2005. ISPA 2005. Proceedings of the 4th International Symposium on. 2005: IEEE.
  • 5M. Mir Hashem, F. Karim, A. Amin. Three Dimensional Face Recognition Using SVM Classifier, Computer And Information Science[C]. 2008. ICIS 08. Seventh IEEE/ACIS International Conference on. 2008: IEEE.
  • 6Hiremath, P. S. And Manjunatha Hiremath. 3D Face Recognition Based On Radon Transform, PCA, LDA Using KNN And SVM[J]. In- ternational Journal Of Image, Graphics and Signal Processing (IJIGSP), 2014. 6(7): 36.
  • 7B.A., Chiraz , Paul A. Griffin. Comparing and Combining Depth And Texture Cues for Face Recognition[J[. Image and Vision Com- puting, 2005. 23(3): 339-352.
  • 8Chua, Chin-Seng, Feng Han and Yeong-Khing Ho. 3D Human Face Recognition Using Point Signature. In Automatic Face and Ges- ture Recognition, 2000. Proceedings. Fourth IEEE International Conference on. 2000: IEEE.
  • 9C. Jamie, C. Vinod, C. Sridha, F. Clinton. Face Recognition From 3d Data Using Iterative Closest Point Algorithm and Gaussian Mix- ture Models, 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on. 2004: IEEE.
  • 10J. Andrew E., H. Martial. Using Spin Images For Efficient Object Recognition In Cluttered 3D Scenes[J], Pattern Analysis and Ma- chine Intelligence, IEEE Transactions On. 1999, 21(5):433-449.

同被引文献6

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部