期刊文献+

基于多尺度卷积神经网络的场景标记

Scene Labeling Based on Multiscale Convolutional Network
下载PDF
导出
摘要 场景标记是将图片中的像素按照其所属景物的种类来识别并进行标记。传统学习算法将训练集图片和某种学习机制相结合,利用后者的特点来提高训练正确率。提出一种基于多尺度卷积神经网络训练已知图像及其标记的方法,用测试集图片来验证其标记正确率。通过在Ubuntu系统上搭建快速机器学习环境Torch7来实现图片像素的场景标记。 Scene labeling is a method which we label each pixel in an image with the category of the object it belongs to. The traditional learning algorithms combine the family of images with some method which is used to improve accuracy of training. Presents a method that uses a multiscale convolution network trained from pixels with label known and gets verified by the test set of graph. The system is built on Ubuntu by Torch7 which is a kind of sharp environment for machine learning.
作者 尹蕊
出处 《现代计算机》 2016年第4期48-51,共4页 Modern Computer
关键词 多尺度 卷积神经网络 场景标记 深度学习 Multiscale Convolutional Networks Scene Labeling Deep Learning
  • 相关文献

参考文献3

  • 1C.Farabet, C.Couprie, L.Najman, Y.LeCun. Scene Parsing with Muhiscale Feature Learning, Purity Trees, and Optimal Covers. Proc. Int'l Conf. Machine Learning,June 2012.
  • 2王涛,查红彬.计算机视觉前沿与深度学习[J].中国计算机学会通讯,2015,4.
  • 3R.Socher, C.C.Lin,A.Y.Ng, C.D Manning. Parsing Natural Scenes and Natural Language with Recursive Neural Networks. Proc.26th Int'l Conf. Machine Leaming,2011.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部