期刊文献+

模糊数据流的进化粒度神经网络分类算法 被引量:2

Classification algorithm of the evolving granular neural network for fuzzy data streams
下载PDF
导出
摘要 模糊数据流的分类问题大多从模糊数据流中提取典型的特征来进行分类,没有考虑到概念漂移及非平衡问题。基于此,从模糊粒度神经元入手,构建了进化粒度神经网络的多层次拓扑结构。采用了模糊神经元的信息聚集规则,提出了进化粒度神经网络的模糊编码方法与快速进化原理。运用梯形隶属函数对进化粒度神经元的聚集和模糊推理功能进行递归,通过关联函数和核函数来评估奇异逼近与粒度的近似结果,并以进化迭代和半监督分类方法解决了模糊数据流中的概念漂移及非平衡问题,从而实现了对模糊数据流的有效分类,仿真结果也证明了该方法的有效性。 Most previous research has classified fuzzy data flow on the basis of some typical features extracted from the fuzzy data flow and fails to consider the problems of concept drifting and imbalance. We used the fuzzy granularity neuron to construct a multilevel topology structure of an evolving granular neural network. Based on the information gathering rule,we propose a fuzzy encoding method and rapid evolution theory of the evolving granular neural network. In addition,we used the trapezoidal membership function to gather the evolving granular neurons and the recurring fuzzy reasoning function. We used correlation and kernel functions to evaluate the singular approximation and the approximate granularity results. We also used evolutionary iteration and the semi-supervised classification method to solve the concept drifting and imbalance problems of fuzzy data flow,in order to effectively classify the fuzzy data flow. The simulation results indicate that this method is reasonable and correct.
作者 刘志军 张杰
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第3期474-480,共7页 Journal of Harbin Engineering University
基金 教育部高等学校博士学科点专项科研基金资助项目(2012371812 0004) 中国博士后基金资助项目(2015M581757) 山东省自然科学基金资助项目(2015ZRB019PR) 全国统计科研计划重点资助项目(2015106)
关键词 模糊数据流 进化粒度神经网络 粒计算 凸包 进化迭代 fuzzy data flow evolving granular neural network granular computing convex hull evolutionary iteration
  • 相关文献

参考文献4

二级参考文献50

  • 1王国俊.中外模糊系统研究之比较[J].国际学术动态,1994(4):48-49. 被引量:6
  • 2郭颂,赖小平.非处方药模糊综合评判模型的研究与设计[J].信阳师范学院学报(自然科学版),2005,18(2):207-209. 被引量:4
  • 3殷荃.模糊数据库中的数据表示与数据匹配[J].计算机工程与应用,1997,33(5):7-10. 被引量:15
  • 4Domingos P, Hulten G. Mining high-speed data streams[C]. Proc of ACM Sigkdd Int Conf Knowledge Discovery in Databases. Boston: ACM Press, 2000: 71-80.
  • 5Hulten G, Spencer L, Domingos E Mining time-changing data streams[C]. Proc of ACM Sigkdd Int Conf Knowledge Discovery in Databases. San Francisco: ACM Press, 2001: 97-106.
  • 6Wang H, Fan W, Yu P, et al. Mining concept drifting data streams using ensemble classifiers[C]. The 9th ACM lnt Conf on Knowledge Discovery and Data Mining. Washington: ACM Press, 2003: 226-235.
  • 7Tom Mitchell. Machine learning[M]. McGraw Hill, 1997: 123_12~6.
  • 8Zico Kolter J, Marcus A Maloof. Dynamic weighted majority: An ensemble method for drifting concepts[J]. J of Machine Learning Research, 2007, 8(8): 2755-2790.
  • 9Li C Q, L!ng T W, Hu M. Efficient processing of updates in dynamic XML data[C]. Proc of the 22nd Int Conf on Data Engineering. Washington DC: IEEE Computer Society, 2006: 13-22.
  • 10Li C Q, Ling T W, Hu M. Efficient updates in dynamic XML data: From binary string to quaternary string[J]. The Very Large Data Bases J, 2008, 17(3): 573-601.

共引文献24

同被引文献24

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部