期刊文献+

多无人机协同障碍规避控制方法 被引量:3

Control method for multi-UAVs cooperative obstacle avoidance
下载PDF
导出
摘要 为有效地解决不确定动态环境下多无人机协同障碍规避问题,提出一种联合扩展卡尔曼滤波和模型预测控制的控制器设计方法。首先构建分布式无人机协同障碍规避体系架构、无人机的运动模型及其通信拓扑。采用扩展卡尔曼滤波(EKF)预测动态障碍物的轨迹,并设计一种信息补偿规则。然后,基于模型预测控制(MPC)方法,设计障碍规避控制器。仿真结果表明:EKF方法能够准确地预测动态障碍物的轨迹;无人机之间通过协作,可以有效地降低预测误差。 For solving the problem of multi-UAVs(multi-unmanned aerial vehicles) cooperative obstacle avoidance in dynamic environment, a method for controller design in combination with the extended Kalman filter(EKF) and model predictive control(MPC) was proposed. Firstly, distributed architecture for UAV cooperative obstacle avoidance, the motion model of UAV and the communication topology were established, respectively. Then the EKF algorithm was used to predict the trajectory of dynamic obstacle, and an information compensation rule was designed. Afterwards, based on the model predictive control(MPC) method, the controller for UAV obstacle avoidance was designed. The results show that the proposed EKF method can predict the trajectory of dynamic obstacle correctly, and that the cooperation between the UAVs can reduce the predictive errors effectively.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期114-122,共9页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61105012) 中国航空科学基金资助项目(20135896027)~~
关键词 无人机协同 障碍规避 扩展卡尔曼滤波 模型预测控制 UAVs cooperation obstacle avoidance extended Kalman filter model predictive control
  • 相关文献

参考文献20

  • 1ZEITLIN A D. Issues and tradeoffs in sense and avoid for unmanned aircraft[C]//Proceedings of the 4th Annual Systems Conference. Piscataway, NJ: IEEE, 2010: 61-65.
  • 2DEGARMO M, NELSON G M. Prospective unmanned aerial vehicle operations in the future national airspace system[C]// AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum. Chicago, IL: AIAA, 2004: 20-23.
  • 3MUJUMDAR A, PADHI R. Evolving philosophies on autonomous obstacle/collision avoidance of unmanned aerial vehicles[J]. Journal of Aerospace Computing, Information, and Communication, 2011, 8(2): 17-41.
  • 4XAVIER P, LUIS D, JORGE R. Requirement, issues, and challenges for sense and avoidance in unmanned aircraft system[J]. Journal of Aircraft, 2012, 49(3): 677-687.
  • 5LEE L. Decentralized motion planning within an artificial potential framework (APF) for cooperative payload transport by multi-robot collectives[M]. Buffalo, New York, 2004: 32-33.
  • 6CHOU F Y, YANG C Y, YANG J S. Support vector machine based artificial potential filed for autonomous guided vehicle[C]//Proceeding of the 4th International Symposium on Precision Mechanical Measurements. Bellingham, USA, 2008: 71304J.1- 71304J. 6.
  • 7PAUL T, KROGSTAD T R, GRAVDAHL J T. Modeling of UAV formation flight using 3D potential field[J]. Simulation Modeling Practice and Theory, 2008, 16(9): 1453-1462.
  • 8LEE J. Design of UAV formation flight controller based on formation geometry center concept[D]. Seoul: Seoul University. School of Mechanical and Aerospace Engineering, 2009: 95-96.
  • 9ANUSHA M, RADHAKANT P. Reactive collision avoidance using geometric and differential geometric gnidance[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1): 303-310.
  • 10GARDINER B, AHMAD W, COOPER T, et al. Collision avoidance techniques for unmanned aerial vehicles technical report[R]. Auburn, AL: Auburn University, 2011.

同被引文献26

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部