期刊文献+

基于功能梯度磁电复合材料的新型自偏置磁传感器

The novel self- bias magnetic sensor based on functionally stepped magnetoelectric composite materials
下载PDF
导出
摘要 文章采用超磁致伸缩材料Terfenol-D(Tb0.37Dy0.63Fe2)、金属玻璃Metglas 2605SA1和压电材料PZT(Pb(Zr,Ti)O3),设计了一种基于功能梯度磁电复合材料的新型自偏置磁传感器.利用Metglas和Terfenol-D之间的磁导率和矫顽力差异产生较强的磁化梯度,打破原有的平衡状态,导致内建磁场产生,进一步提高了零偏置磁场下磁致伸缩材料的压磁系数和磁电响应.实验结果表明:该传感器获得了较高的低频和高频零偏置磁电电压系数,分别达到9.14m V/Oe和572 m V/Oe,并且谐振磁电电压输出和激励交变磁场之间呈线性变化关系.该自偏置磁传感器避免了传统磁电传感器对偏置磁场的依赖,具有制作简单、成本低、体积小,无需偏置磁场以及灵敏度高等优点. A brand- new self- bias magnetic sensor based on functionally stepped magnetoelectric composite materials is presented using the Metglas 2605SA1,giant magnetostrictive Terfenol- D and piezoelectric PZT. The strong magnetization gradients are achieved due to the great differences in the magnetic permeability and coercivity between Metglas and Terfenol- D. Consequently,the spatial symmetry of these two materials is broken and yields an internal magnetic field,which enhances the piezomangetic coefficient of magnetostrictive material and magnetoelectric response at zero bias. Experimental results show that the low- frequency and resonant ME voltage coefficients for Metglas / Terfenol- D / PZT( MTP) magnetic sensor achieve9. 14 m V / Oe and 572 m V / Oe,respectively. Furthermore,there is an excellent linear relationship between AC magnetic field input and resonant magnetoelectric voltage output. Such a type of self- bias magnetic sensors avoids the dependence of traditional magnetoelectric sensor on the dc bias magnetic field. It has the advantages of very simple fabrication,extremely small size,quite low cost,no bias magnetic field required and high magnetic field sensitivity,et al.
作者 陈蕾
出处 《重庆文理学院学报(社会科学版)》 2016年第2期68-71,共4页 Journal of Chongqing University of Arts and Sciences(Social Sciences Edition)
基金 国家自然科学基金项目(61304255) 重庆市教育委员会科学技术研究项目(KJ131221)
关键词 磁电效应 功能梯度磁电复合材料 自偏置磁传感器 磁致伸缩材料 magnetoelectric effect functionally stepped magnetoelectric composite materials self-bias magnetic sensor magnetostrictive material
  • 相关文献

参考文献11

  • 1ZHAI J Y,XING Z P,DONG S X,et al.Detection of pixo-tesla magnetic fields using magneto-electrci sensors at room temperature[J].Appl.Phys.Lett.2006,88(6):0625101-0625103.
  • 2WANG Y,GRAY D,BERRY D,et al.An extremely low equivalent magnetic noise magnetoelectric sensor[J].Adv Mater,2011,23(35):4111-4114.
  • 3CHEN L,LI P,WEN Y M,et al.Note:high sensitivity self-bias magnetoelectric sensor with two different magnetostrictive materials[J].Rev Sci Instrum,2013(84):066101.
  • 4CHEN L,LI P,WEN Y M,et al.The magnetostrictive material effects on magnetic field sensitivity for magnetoelectric sensor[J].J.Appl.Phys,2012:07E503.
  • 5LAGE E,KIRCHHOF C,HRKAC V,et al.Exchange biasing of magnetoelectric composites[J].Nat Mater,2012(11):523–529.
  • 6CHENG L,LI P,WEN Y M,et al.Resonance magnetoelectric couplings of piezoelectric ceramic and ferromagnetic constant-elasticity alloy composites with different layer structures[J].J Alloys Compd,2013:156-160.
  • 7DONG S X,LI J F,VIEHLAND D.Ultrahigh magnetic field sensitivity in laminates of Terfenol-D and Pb(Mg1/3Nb2/3)O3-Pb Ti O3Crystals[J].Appled Physics Letters,2003,83(11):2265-2267.
  • 8JIA Y M,ZHAO X Y,LUO H S,et al.Magnetoelectric effect in laminate composite of magnets/0.7Pb(Mg1/3Nb2/3)O3–0.3Pb Ti O3single crystal[J].Appl.Phys.Lett.,2006,88:142504.
  • 9MANTESE J V,MICHELI A L,SCHUBRING N W,et al.Magnetization-graded ferromagnets:the magnetic analogs of semiconductor junction elements[J].Appl.Phys.Lett.2005,87(8):082503.
  • 10YANG F,WEN Y M,LI P,et al.Resonant magnetoelectric response of magnetostrictive/piezoelectric laminate composite in consideration of losses[J].Sens.Actuators A,2008(141):129-135.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部