摘要
深水浊积水道和浊积扇是西非尼日尔三角洲A油田最发育的沉积相,也是最有利的砂岩储层。该类储层非均质性强,常规预测方法精度较低。将地震属性和储层物性参数建立神经网络关系,对储层参数进行定量预测,该方法较常规的井间插值有很多优势,精度更高,且能把地震属性的信息反映到储层描述中。该方法在A油田取得了良好的效果,值得在类似油田储层预测中进行推广应用。
Deep-water turbidite channels and abyssal fans are the most mature sedimentary facies in Niger Delta,West Africa,and they are the most effective sandstone reservoirs.Its accuracy predicted by the traditional method is low,because the reservoir has high heterogeneity.The proposed method of this thesis was more advanced than the ordinary interpolation of well logs,which established a neural network relationship between seismic property and petrophysical parameters,and predicted the reservoir parameters qualitatively with the advantages of higher accuracy,meanwhile,the seismic properties can be used to describe the reservoirs.This research shows that the method obtains good results in A oil field,which is worth to be used to other similar oil reservoirs.
出处
《工程地球物理学报》
2016年第2期213-220,共8页
Chinese Journal of Engineering Geophysics
基金
国家重大专项课题(编号:2011ZX05030-005)
关键词
井震联合
属性分析
深水浊积岩
储层预测
well-to-seismic integration
attribute analysis
deep-water turbidite sand
res ervoir prediction