期刊文献+

数字化珊瑚羟基磷灰石人工骨支架的体外降解性能 被引量:4

Degradation performance of the digital coralline hydroxyapatite artificial bone scaffold in vitro
下载PDF
导出
摘要 背景:前期实验成功制备了数字化珊瑚羟基磷灰石人工骨支架材料,并已证实其具有良好的理化性能和生物相容性。目的:评价数字化珊瑚羟基磷灰石人工骨的体外降解性能。方法:将珊瑚羟基磷灰石与左旋-聚乳酸分别以3∶1和4∶1的质量比混合,制备数字化珊瑚羟基磷灰石人工骨支架材料试件。将两种数字化人工骨支架材料、珊瑚羟基磷灰石及左旋-聚乳酸分别置于初始p H值为7.4的50 m L模拟体液中,在37℃恒温箱中降解16周,动态观察溶液p H值、钙及磷离子浓度,以及材料降解率、抗压强度及微观结构变化。结果与结论:降解16周时,两种数字化人工骨组的p H值维持在7.34-7.36,高于左旋-聚乳酸组(P<0.01),低于珊瑚羟基磷灰石组(P<0.01);两种数字化人工骨组的钙离子浓度高于珊瑚羟基磷灰石组(P<0.01),磷离子浓度低于珊瑚羟基磷灰石组(P<0.01);两种数字化人工骨组的降解率低于珊瑚羟基磷灰石组(P<0.01),高于左旋-聚乳酸组(P<0.01);抗压强度顺序:珊瑚羟基磷灰石组>3∶1数字化人工骨组>左旋-聚乳酸组>4∶1数字化人工骨组;两种数字化人工骨微孔结构增多,孔隙率升高,孔径增大,说明数字化珊瑚羟基磷灰石人工骨支架具有良好的降解性能。 BACKGROUND: We have successfully prepared the digital coralline hydroxyapatite artificial bone scaffold in previous experiments, and it has good physicochemical properties and biocompatibility. OBJECTIVE: To evaluate the in vitro degradation performance of the digital coralline hydroxyapatite artificial bone. METHODS: We used the mixtures of coralline hydroxyapatite and L-polylactic acid at the mass ratio of 3:1 and 4:1 as raw materials to prepare the digital coralline hydroxyapatite artificial bone scafflold specimens, and then they were immersed in the 50 m L stimulated body fluid with the initial p H value of 7.4 in an incubator at 37 ℃ for degradation. After 16 weeks of degradation, the p H value, calcium and phosphate ion concentration, degradation rate, compressive strength and changes of microstructure were dynamically observed. RESULTS AND CONCLUSION: At the 16 th weeks of degradation, the p H values in the two kinds of digital artificial bone groups maintained at 7.34-7.36, which were higher than that in the L-polylactic acid group(P 〈0.01), and lower than that in the coralline hydroxyapatite group(P 〈0.01). The calcium ion concentrations in the two kinds of digital artificial bone groups were higher than that in the coralline hydroxyapatite group(P 〈0.01), and the phosphorus ion concentrations were lower than that in the coralline hydroxyapatite group(P 〈0.01). The degradation rates in the two kinds of digital artificial bone groups were lower than that in the coralline hydroxyapatite group(P 〈0.01), and higher than that in the L-polylactic acid group(P 〈0.01). The order of the compressive strength was as follows: coralline hydroxyapatite group 3:1 digital artificial bone group L-polylactic acid group 4:1 digital artificial bone group. The cellular structure, porosity and pore size in the two kinds of digital artificial bone groups were all increased. These results show that the prepared digital coralline hydroxyapatite artificial bone scaffold has good degradation propertyies.
出处 《中国组织工程研究》 CAS 北大核心 2016年第3期330-335,共6页 Chinese Journal of Tissue Engineering Research
基金 福建省教育厅科技项目(JA12416) 福建省自然科学基金青年创新项目(2013D013) 漳州职业技术学院院级科研项目(ZZY1204)~~
  • 相关文献

参考文献5

二级参考文献96

  • 1杨进城,尹庆水,林骏,李剑,黄华扬,张余.自制复合抗肿瘤珊瑚羟基磷灰石人工骨体外抗肿瘤实验[J].中国组织工程研究与临床康复,2007,11(18):3508-3511. 被引量:5
  • 2Da Silva GR, Ayres E, Orefice RL, et al. Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. J Drug Target, 2009, 17(5): 374-383.
  • 3Rancan F, Papakostas D, Hadam S, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res, 2009, 26(8): 2027-2036.
  • 4Yang H, Li K, Liu Y, et al. Poly (D, L-lactide-co-glycolide) nanoparticles encapsulated fluorescent isothiocyanate and paclitaxol: preparation, release kinetics and anticancer effect. J Nanosci Nanotechnol, 2009, 9(1): 282-287.
  • 5Valmikinathan CM, Defroda S, Yu X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules, 2009, 10(5): 1084-1089.
  • 6Gao X, Kuruba R, Damodaran K, et al. Polyhydroxylalkyleneamines: a class of hydrophilic cationic polymer-based gene transfer agents. J Control Release, 2009, 137(1): 38-45.
  • 7Jian ZY, Chang 1K, Shau MD. Synthesis and characterizations of new lysine-based biodegradable cationic poly (urethane-co-ester) and study on self-assembled nanoparticles with DNA. Bioconjug Chem, 2009, 20(4): 774-779.
  • 8Amass W, Amass A, Tighe B. A review of biodegradable polymers: uses, current developments in the synthesis and characterisation of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int, 1998, 47(2): 89-144.
  • 9Fambri L, Pegoretti A, Fenner R, et al. Biodegradable fibres of poly (L- lactic acid) produced by melt spinning. Polymer, 1997, 38(1): 79-85.
  • 10Tomala P. Biodegradable self-reinforced composite materials: manufacturing structure and mechanical properties. Clin Mater, 1992, 10(1-2): 29-34.

共引文献14

同被引文献15

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部