期刊文献+

一个具有时滞和阶段结构的比率依赖型捕食系统的稳定性 被引量:2

Stability Analysis on a Ratio-dependent Predator-prey Model with Time Delay and Stage Structure
下载PDF
导出
摘要 本文研究一个具有时滞和捕食者、食饵均具有阶段结构的比率依赖型捕食系统的稳定性.通过分析特征方程,运用Hurwitz判定定理,讨论了该系统的非负边界平衡点和正平衡点的局部稳定性,并得到了Hopf分支存在的充分条件;通过构造辅助系统,运用单调迭代方法和比较定理,讨论了该系统的非负边界平衡点和正平衡点的全局稳定性,从而得到了该生态系统灭绝与永久持续生存的充分条件. In this paper, a ratio-dependent predator-prey model with time delay due to the gestation of the predator and stage structure for both the predator and the prey is investigated. By analyzing the characteristic equations and applying Hurwitz criterion, the local stability of a semi-trivial boundary equilibrium and a positive equilibrium are discussed, respectively. More-over, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium. By comparison arguments and iteration technique, the global stability of the semi-trivial boundary equilibrium and the positive equilibrium are addressed, respectively.
出处 《工程数学学报》 CSCD 北大核心 2016年第2期138-150,共13页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11101117) 河北省教育厅基金(QN2014040) 河北经贸大学基金(2015KYQ01)~~
关键词 捕食系统 阶段结构 时滞 稳定性 HOPF分支 predator-prey model stage structure time delay stability Hopf bifurcation
  • 相关文献

参考文献11

  • 1Arditi R, Perrin N, Saiah H. Functional response and heterogeneities: an experiment test with cladocerans[J]. Oikos, 1991, 60(1): 69-75.
  • 2Arditi R, Saiah H. Empirical evidence of the role of heterogeneity in ratio-dependent consumption[J].Ecology, 1992, 73(5): 1544-1551.
  • 3Kuang Y, Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. Journal ofMathematical Biology, 1998, 36(4): 389-406.
  • 4Xu R, Gan Q T, Ma Z E. Stability and bifurcation analysis on a ratio-dependent predator-prey model withtime delay[J]. Journal of Computational and Applied Mathematics, 2009, 230(1): 187-203.
  • 5Kuang Y, So J W H. Analysis of a delayed two-stage population model with space-limited recruitment[J].SIAM Journal on Applied Mathematics, 1995, 55(6): 1675-1695.
  • 6Wang W D, Chen L S. A predator-prey system with stage-structure for predator[J]. Computers and Mathematicswith Applications, 1997, 33(8): 83-91.
  • 7Kuang Y. Delay Differential Equations with Applications to Population Dynamics[M]. San Diego: AcademicPress, 1993.
  • 8Xu R, Ma Z E. The effect of stage-structure on the permanence of a predator-prey system with timedelay[J]. Applied Mathematics and Computation, 2007, 189(2): 1164-1177.
  • 9Xu R, Ma Z E. Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure[J]. Chaos Solitons and Fractals, 2008, 38(3): 669-684.
  • 10Hale J. Theory of Functional Differential Equations[M]. New York: Springer Heidelberg, 1977.

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部