期刊文献+

最小区域球度误差评价的弦线截交方法 被引量:5

Intersecting Chords Method in Minimum Zone Evaluation of Sphericity Deviation
下载PDF
导出
摘要 最小区域球度误差评价是精密测量技术中的一个非常重要并且复杂问题。针对笛卡儿坐标系下球体形状误差评价,介绍一种利用弦线截交关系求解最小区域球度误差评价方法。通过构建笛卡儿坐标系下球度误差测量模型,提出基于一般二次曲面理论的最小二乘球心计算方法。根据最小区域球度误差模型分类,利用弦线截交关系建立起最小区域球度误差评价的2+3和3+2模型,最后通过截交几何模式产生了虚拟中心,从而准确确定球度误差评价模型的最大弦线与最大截面,达到快速精确构建模型的目的。测试数据和实例应用表明,基于弦线截交关系的最小区域球度误差评价方法具有更高的计算效率,且测量空间不受测量坐标系和零件几何形状误差的影响,并显著提高了整体评价的精度与准确性。 Minimum zone evaluation of sphericity deviation is a very important and complex problem in precision measurement technology. For the evaluation of sphere form deviation in Cartesian coordinates, a new minimum zone evaluation method of sphericity deviation using the relationship of intersecting chords is introduced. First, the measurement models of sphericity deviation in Cartesian coordinates are constructed and a calculation method based on general quadratic surface theory is presented for obtaining least square center. Then, according to the classification of minimum zone sphericity deviation models, using the intersecting chord method to build the 2+3 and the 3+2 models of minimum zone evaluation of sphericity deviation. Finally, through the intersecting chord geometry model produces virtual center so as to accurately determine the maximum chord and the maximum section of evaluation model, meanwhile, the purpose of fast and accurate constructing model is also achieved. The results and examples indicate that intersecting chord method has high the computational efficiency and the accuracy of evaluation. In addition, the method has little influence on the measurement space from the measurement coordinate system and the geometry form error, which significantly improves the minimum zone evaluation of sphericity deviation.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2016年第5期137-143,共7页 Journal of Mechanical Engineering
基金 国家科技重大专项资助项目(2012ZX04001-012-04)
关键词 球度误差 最小区域球 弦线截交 笛卡儿坐标系 sphericity deviation minimum zone sphere intersecting chords Cartesian coordinates
  • 相关文献

参考文献2

二级参考文献20

  • 1田社平,邵(日文).圆度误差的全局评价方法[J].仪器仪表学报,2003,24(z2):10-11. 被引量:5
  • 2陈飒,李郝林.基于改进遗传算法的圆度误差评定[J].机械设计与制造,2006(1):20-21. 被引量:11
  • 3刘顺芳,倪素环.最小外接圆法评定圆度误差值的计算机实现方法[J].计量技术,2006(2):26-29. 被引量:5
  • 4崔长彩,黄富贵,张认成,李兵.粒子群优化算法及其在圆度误差评定中的应用[J].计量学报,2006,27(4):317-320. 被引量:18
  • 5ASME Y 14.5M Dimensioning and tolerancing[S].New York:The American Society of Mechanical Engineers,1994.
  • 6CHEN C K,LIU C H.A study on analyzing the problem of the spherical form error[J].Precision Engineering,2000,24:119-126.
  • 7SAMUEL G L,SHUNMUGAM M S.Evaluation of spher-icity error from form data using computational geometric techniques[J].International Journal of Machine Tools & Manufacture.2002,42:405-416.
  • 8WEN Xiulan,SONG Aiguo.An immune evolutionary algorithm for sphericity error evaluation[J].International Journal of Machine Tools & Manufacture,2004,44:1 077-1 084.
  • 9WANG Musong,HOSSEIN CHERAGHI S,ABU MASUD S M.Sphericity error evaluation:theoretical derivation and algorithm development[J].IIE Transactions,2001,33:281-292.
  • 10CARR Kirsten,FERREIRAT Placid.Verification of fro-mtolerances Part Ⅱ:Cylindricity and straightness of a median line[J].Precision Engineering,1995,17:144-156.

共引文献22

同被引文献29

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部