期刊文献+

基于用户移动行为相似性聚类的Markov位置预测 被引量:3

Markov Location Prediction Based on User Mobile Behavior Similarity Clustering
下载PDF
导出
摘要 由于采集点丢失或出现新用户等原因,GPS轨迹数据往往具有稀疏性,使得基于单个用户数据的位置预测准确率较低.针对这种情况,提出了基于移动行为相似性和用户聚类的Markov位置预测方法.首先,基于Voronoi图和原始GPS轨迹进行区域划分,位置预测基于区域轨迹进行;其次,提出了同时考虑用户转移特性和用户区域特性的移动行为相似性计算方法;再次,根据移动行为相似性对用户进行聚类,并在聚类的用户组上采用一阶Markov模型进行位置预测,提高了位置预测的准确性.真实GPS轨迹数据上的实验表明了所提出方法的有效性. GPS trajectories are often sparse due to the sampling points lost or new users appearing, which makes the accuracy of location prediction low based on the data of a single user. To solve this problem, a novel Markov location prediction approach was proposed based on user mobile behavior similarity and user clustering. First, the map was partitioned into various regions based on Voronoi diagram and original GPS trajectories. And then locations were predicted over region trajectories. Second, a new approach was proposed to measure the similarity of users' mobile behaviors by considering users' transferring features and regional features. Third, based on the mobile behavior similarity, users were divided into various groups and the first-order Markov model was applied on the groups to predict users' locations. Therefore, the accuracy of location prediction was improved. The experiments over real GPS trajectory dataset indicate that the proposed method is effective for location prediction.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第3期323-326,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61272177)
关键词 移动行为相似性 转移概率矩阵 区域向量 聚类概率向量 位置预测 mobile behavior similarity transition probability matrix region vector clusteringprobability vector location prediction
  • 相关文献

参考文献10

  • 1周傲英,杨彬,金澈清,马强.基于位置的服务:架构与进展[J].计算机学报,2011,34(7):1155-1171. 被引量:170
  • 2Bao J,Zheng Y,Mokbel M F.Location-based and preference-aware recommendation using sparse geo-social networking data[C]// Proceedings of the 20th International Conference on Advances in Geographic Information Systems.Redondo Beach,California,2012:199-208.
  • 3Li H F,Dong L H, Han J F.A mobile ordering scheme based on LBS[C]// Proceedings of the 4th International Conference on Emerging Intelligent Data and Web Technologies.Xi’an,2013:398-401.
  • 4Gidófalvi G,Dong F.When and where next:individual mobility prediction[C]//Proceedings of the First ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems.Redondo Beach,California,2012:57-64.
  • 5吕明琪,陈岭,陈根才.基于自适应多阶Markov模型的位置预测[J].计算机研究与发展,2010,47(10):1764-1770. 被引量:10
  • 6余雪岗,刘衍珩,魏达,田明.用于移动路径预测的混合Markov模型[J].通信学报,2006,27(12):61-69. 被引量:12
  • 7Chen Z B,Shen H T, Zhou X F.Discovering popular routes from trajectories[C]//Proceedings of the 27th ICDE International Conference on Data Engineering.Hannover,2011:900-911.
  • 8陈春.泰森多边形的建立及其在计算机制图中的应用[J].测绘学报,1987,16(3):223-231.
  • 9Pavan M,Pelillo M.Dominant sets and pairwise clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):167-172.
  • 10Yuan J,Zheng Y,Xie X,et al.Driving with knowledge from the physical world[C]// Proceedings of International Conference on the 17th ACM SIGKDD Knowledge Discovery and Data Mining.San Diego,2011:316-324.

二级参考文献122

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2余雪岗,刘衍珩,魏达,田明.用于移动路径预测的混合Markov模型[J].通信学报,2006,27(12):61-69. 被引量:12
  • 3Yang B, Lu H, Jensen C S. Scalable continuous range monitoring of moving objects in symbolic indoor space//Proeeedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:671-680.
  • 4Wolfson O, Sistla P A, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 1999, 7(3): 257-387.
  • 5Pfoser D, Jensen C S. Capturing the uncertainty of movingobjects representations//Proceedings of the 6th International Symposium on Advances in Spatial Databases. Hong Kong, China, 1999:111-132.
  • 6Cheng R: Kalashnikov D V, Prabhakar S. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1112- 1127.
  • 7Zhang M, Chen S, Jensen C S, Ooi B C, Zhang Z. Effectively indexing uncertain moving objects for predictive queries// Proceedings of the VLDB Endowment. Lyon, 2009, 2 (1): 1198-1209.
  • 8Cheng R, Chen L, Chen J, Xie X. Evaluating probability threshold k-nearest-neighbor queries over uncertain data// Proceedings of the 12th International Con/erence on Extending Database Technology. Saint Petersburg, 2009 :672-683.
  • 9Tao Y, Cheng R, Xiao X, Ngai W K, Kao B, Prabhakar S. Indexing multi-dimensional uncertain data with arbitrary probability density funetions//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, 2005 : 922-933.
  • 10Kalashnikov D V, Ma Y, Mehrotra S, Hariharan R. Index for fast retrieval of uncertain spatial point data//Proceedings of the 14th ACM International Symposium on Geographic Information Systems. Arlington, 2006:195-202.

共引文献183

同被引文献23

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部