期刊文献+

中国东部气溶胶光学厚度季节变化的数值模拟 被引量:6

Numerical simulation of the seasonal variation of aerosol optical depth over eastern China
原文传递
导出
摘要 气候模式对气溶胶光学厚度AOD的合理模拟,是模拟研究气溶胶气候效应的前提。利用在线耦合的区域气候—大气化学—气溶胶耦合模式系统RIEMS-Chem,模拟研究了2010年中国东部地区AOD的季节变化情况。模拟结果与卫星搭载的中分辨率成像光谱仪(MODIS)的反演资料和地基气溶胶观测网(AERONET)的站点观测资料分别进行了一年四季的详细对比,检验结果显示尽管模拟值有所低估,模式仍然能够合理地反映AOD的季节变化情况和空间分布特征,与AERONET站点观测值相比,整体相关系数为0.6。MODIS反演和相应模拟结果均显示,中国东部地区AOD整体水平夏季最大,春季次之,秋、冬季最小,华北平原、四川盆地和华中地区是AOD的主要大值区。只考虑日间AOD时,其季节分布特征略有不同,在华北平原地区,日间AOD夏季最大(1.1—1.5),在长江中下游流域地区,日间AOD则在春季最大(1.1—1.7);在中国东部,日间AOD的大值在夏、冬两季分别主要分布在长江以北、以南地区,而在春、秋两季则主要位于长江中下游流域。 Aerosol Optical Depth(AOD) is a key factor that reflects the impact of atmospheric aerosol on the climate. The accurate simulation of AOD is the basis for a climatic model in modeling the aerosol climate effects. In this study, an online-coupled three-dimensional regional climate–atmospheric chemistry–aerosol model was used to investigate the AOD over eastern China in 2010 to understand the spatial and seasonal behavior of AOD and the role aerosol plays over this region.The Regional Integrated Environmental Modeling System online-coupled with atmospheric chemistry and aerosol processes(RIEMS-Chem) was used in this study.This model contains sophisticated atmospheric dynamic, atmospheric chemical, and aerosol chemical processes. The onlinecoupled system facilitates the model to simulate the impact of aerosol on climatic factors and the feedback of climate on aerosol distribution.Simulated AOD was verified by satellite retrieval of the Moderate-Resolution Imaging Spectroradiometer(MODIS) and insitu measurements from the Aerosol Robotic Network(AERONET) in four seasons.The comparison of the AOD simulation result with the corresponding MODIS retrieval indicated the capability of the model to reproduce the seasonal variation and spatial distribution of AOD over eastern China, although the model somewhat underestimated the magnitude in summer.The comparison of AOD measurements from the six AERONET sites also showed that the model was able to simulate the spatial and seasonal variation of AOD, but underestimated the magnitude over north China, with an overall correlation coefficient of 0.6 compared with all AERONET measurements. The MODIS retrieval and corresponding simulation result showed that, over eastern China, the AOD was generally higher in summer,followed by spring, and lower in autumn and winter. However, the daytime seasonal mean AOD showed different seasonal distribution patterns:For areas around the North China Plain, the daytime seasonal mean AOD reached its highest level in summer with values ranging from 1.1 to 1.5, but lowest in other seasons. By contrast, over areas of the middle and lower reaches of the Yangtze River, the daytime seasonal mean AOD was reached its highest level in spring with values ranging from 1.1 to 1.7, followed by autumn and winter, but lowest in summer. For the region of eastern China,the daytime seasonal mean AOD reach edits highest level over areas north of the Yangtze River in summer, over areas south of the Yangtze River in winter, and over areas along the middle and lower reaches of the Yangtze River in spring and autumn.Model verification indicated that RIEMS-Chem was able to reflect the characteristics of AOD distribution and its seasonal variation, but under predicted the observation by approximately 20% in terms of the annual mean. According to the model result, the daytime AOD distribution exhibited distinct subregional and seasonal characteristics over eastern China, implying that, over this region, aerosol optical and climatic effects could be subregional and seasonal dependent.
出处 《遥感学报》 EI CSCD 北大核心 2016年第2期205-215,共11页 NATIONAL REMOTE SENSING BULLETIN
基金 国家重点基础研究计划(编号:2010CB950804 2014CB953703) 国家自然科学基金(编号:41405140)~~
关键词 在线耦合区域模式 气溶胶光学厚度AOD 季节变化 中国东部 MODIS AERONET regional online-coupled model Aerosol Optical Depth(AOD) seasonal variation eastern China MODIS AERONET
  • 相关文献

参考文献43

  • 1Carlson T N and Benjamin S G. 1980. Radiative heating rates for Saha- ran dust. Journal of the Atmospheric Sciences, 37(1): 193 - 213 [DOI: 10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2].
  • 2Chang J S, Brost R A, Isaksen I S A, Madronieh S, Middleton P, Stock- well W R and Waleek C I. 1987. A three-dimensional Eulerian acid deposition model: physical concepts and formulation. Journal of Geophysical Research: Atmosphere, 92(D12): 14681 - 14700 [DOI: 10.1029/JD092iD12p14681].
  • 3Dickinson R E, Henderson-Sellers A and Kennedy P J. 1993. Bio- sphere-Atmosphere Transfer Scheme (BATS) Version le as coupled to NCAR Community Climate Model. NCAR/TN- 387+STR. BOULDER, COLORADO: NCAR: 72 [DOI:10.5065/ D67W6959].
  • 4Emmons L K, Waiters S, Hess P G, Lamarque J F, Pfister G G, Fill- more D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baugheum S L and Kloster S. 2010. Description and evaluation of the model for ozone and re- lated chemical tracers, version 4 (MOZART-4). Geoscientific Model Development, 3(1): 43 -67 [DOI: 10.5194/gmd-3-43- 2010].
  • 5Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M and Van Dorland R. 2007. Changes in atmo- spheric constituents and in radiative forcing//Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M and Miller H L, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovemmental Panel on Climate Change .Cam- bridge, United Kingdom and New York, NY, USA: Cambridge University Press: 129 - 234.
  • 6Fu C B. 2003. Potential impacts of human-induced land cover change on East Asia monsoon. Global and Planetary Change, 37(3/4): 219 - 229 [DOI: 10.1016/S0921-8181(02)00207-2].
  • 7Fu C B, Wang S Y, Xiong Z, Gutowski W J, Lee D K, Mcgregor J L, Sato Y, Kato H, Kim J W and Suh M S. 2005. Regional climate model intercomparison project for Asia. Bulletin of the American Meteorological Society, 86(2): 257 -266 [DOI: 10.1175/BAMS- 86-2-257].
  • 8Fu J S, Hsu N C, Gao Y, Huang K, Li C, Lin N H and Tsay S C. 2012. Evaluating the influences of biomass burning during 2006 BASE- ASIA: a regional chemical transport modeling. Atmospheric Chemistry and Physics, 12(9): 3837 - 3855 [DOI: 10.5194/acp-12- 3837-2012].
  • 9Fu Y and Liao H. 2012. Simulation of the interannual variations of bio- genie emissions of volatile organic compounds in China: impacts on tropospheric ozone and secondary organic aerosol. Atmospher- ic Environment, 59:170 - 185 [DOI: 10.1016/j.atmosenv.2012. 05.053].
  • 10Gery M W, Whitten G Z, Killus J P and Dodge M C. 1989. A photo- chemical kinetics mechanism for urban and regional scale com- puter modeling. Journal of Geophysical Research: Atmosphere, 94(D10): 12925 - 12956 [DOI: 10.1029/JD094iD10p12925].

二级参考文献31

  • 1张立盛,石广玉.相对湿度对气溶胶辐射特性和辐射强迫的影响[J].气象学报,2002,60(2):230-237. 被引量:40
  • 2胡敏,赵云良,何凌燕,黄晓锋,唐孝炎,姚小红,陈泽强.北京冬、夏季颗粒物及其离子成分质量浓度谱分布[J].环境科学,2005,26(4):1-6. 被引量:82
  • 3李成才,毛节泰,刘启汉,袁自冰,王美华,刘晓阳.MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用[J].中国科学(D辑),2005,35(A01):177-186. 被引量:127
  • 4Carrico C M, Rood M J, Ogren J A, Neususs C, Wiedensohler A and Heintzenberg .I. 2000. Aerosol optical properties at Sagres, Portugal during ACE-2. Tellus B, 52(2): 694-715 [DOI: 10. 1034/j. 1600 -0889. 2000. 00049. x].
  • 5Carrico C M, Kus P, Rood M J, Quinn P K and Bates T S. 2003. Mix- tures of pollution, dust, sea salt, and volcanic aerosol during ACE- Asia: radiative properties as a function of relative humidity. Journal of Geophysical Research: Atmospheres, 108 ( D23 ) : 8650 [ DOI: 10. 1029/2003 JD003405].
  • 6Day D E and Maim W C. 2001. Aerosol light scattering measurements as a function of relative humidity : a comparison between measurements made at three different sites. Atmospheric Environment, 35 (30) : 5169 -5176 [ DOI: 10. 1016/S1352 -2310(01 )00320 - X].
  • 7Ferron G A, Karg E, Busch B and Heyder J. 2005. Ambient particles at an urban, semi-urban and rural site in Central Europe: hygroscopic properties. Atmospheric Environment, 39 ( 2 ) : 343 - 352 [DOI : 10. 1016/j, atmosenv. 2004.09. 015 ].
  • 8Gass6 S, Hegg D A, Covert D S, Collins D, Noone K J, Ostrom E, Schmid B, Russell P B, Livingston J M, Durkee P A and Jonsson H. 2000. Influence of humidity on the aerosol scattering eoefiqcient and its effect on the upwelling radiance during ACE-2. Tellus B, 52 (2) : 546 -567 [DOI: 10. 1034/j. 1600 -0889. 2000. 00055. x].
  • 9Gupta P, Christopher S A, Wang J, Gehrig R, Lee Y and Kumar N.2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40 (30) : 5880 - 5892 [DOI: 10. 1016/j. atmosenv. 2006.03. 016 ].
  • 10Ira J S, Saxena V K and Wenny B N. 2001. An assessment of hygroscop- ic growth factors for aerosols in the surface boundary layer for com- puting direct radiative forcing. Journal of Geophysical Research : At- mospheres, 106(D17): 20213-20224 [DOI: 10.1029/2000JD000152].

共引文献22

同被引文献99

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部