期刊文献+

AlN:Er薄膜在不同退火温度下应力诱导的微观结构演变 被引量:3

Stress Induced Microstructure Evolution of AlN: Er Film at Different Annealing Temperature
下载PDF
导出
摘要 以透射电镜中的弱束衍衬成像和高分辨相位衬度成像为主要表征手段,辅以X射线衍射、拉曼光谱等测试方法,对Al N:Er样品在退火过程中的微观结构演变过程进行了深入分析。在透射电镜观察下,Er离子注入的Al N样品在退火前存在三个区域:区域Ⅰ为自表面以下约30 nm深度;区域Ⅱ为区域I以下约50 nm深度;区域Ⅲ为区域Ⅱ以下的部分,其中区域Ⅱ为损伤最为严重的区域。在较低的温度(如1025℃时)退火后,区域Ⅰ消失;但1200℃退火后,又重新可以观察到区域Ⅰ。结合TEM、XRD和Raman测试结果,从损伤恢复和应力释放的角度对上述实验现象进行了理论解释:由于Er离子半径和基体原子半径的差异,在区域Ⅱ中引入较大的应力;在1025℃退火时,来自区域Ⅱ的应力作用于区域Ⅰ,导致区域I发生大的晶格扭曲,和区域II合并,用TEM观察不到;在1200℃退火时,应力在表面释放,区域I的晶格扭曲修复,从而用TEM可重新观察到。 The microstructure evolution of Al N: Er during thermal treatment was mainly characterized by weak beam diffraction-contrast imaging and high resolution phase-contrast imaging of the transmission electron microscopy(TEM), which was also supported by X-ray diffraction(XRD) and Raman spectroscopy. Three regions could be observed in the TEM for the implanted samples. The region I is about 30 nm in depth below the surface, the region II is about 50 nm in depth under the region I and is the worst damaged area, and the region III is the area below the reigion II. At relatively low annealing temperature, such as 1025℃, the region I disappears. However, this area can be observed again after annealing at 1200℃. Based on the results of XRD, Raman and TEM, the interesting experiment phenomenon are explained on the view of damage recovery and stress releasing. There is a large stress in the region II due to the large radius difference between Er ions and Ga ions. In the annealing process at 1025℃, the region I is affected by the stress from region II, the lattice distortion in region I is produced. Therefore, the region I is observed as region II under TEM observation. In the annealing process at 1200 ℃, the stress in the region I is released from the surface, the lattice distortion is removed and the region I is observed again under TEM.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2016年第3期285-290,共6页 Journal of Inorganic Materials
基金 国家自然科学基金(61306004 51002179 11247023 51272270 61274127 61474133) 江苏省自然科学基金(BK20130263 BK2012630) 国家基础研究计划973项目(2012CB619305) 中科院引进国外杰出技术人才项目 苏州纳米科技协同创新中心资金~~
关键词 AlN:Er 离子注入 微观结构演变 AlN: Er ion implantation microstructure evolution
  • 相关文献

参考文献16

  • 1HOMMERICH U, NYEIN E E, LEE D S, et al. Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN. Appl. Phys. Lett., 2003, 105(3): 91–96.
  • 2RUTERANA P, LACROIX B, LORENZ K, et al. A mechanism for damage formation in GaN during rare earth implantation at medium range energy and room temperature. Journal of Applied Physics, 2011, 109(1): 013506.
  • 3WANG C M, JIANG W, WEBER W J. Defect clustering in GaN irradiated with O+ ions. Journal of Materials Research, 2002, 17(11): 2945–2952.
  • 4LECLERC S, LACROIX B, DECLEMY A, et al. Mechanisms of damage formation in Eu-implanted AlN. Journal of Applied Physics, 2012, 112(7): 073525.
  • 5PIERRE RUTERANA, MARIE-PIERRE CHAUVANT, KATHARINA LORENZ. Mechanisms of damage formation during rare earth ion implantation in nitride semiconductors. Japanese Journal of Applied Physics, 2013, 52(11): UNSP 11NH02.
  • 6SOARES M J, LEIT?O J P, SLIVA, et al. Structural and optical properties of Er implanted AlN thin ?lms: green and infrared photoluminescence at room temperature. Optical Materials, 2011, 33(7): 1055–1058.
  • 7LORENZ K E, ALVES T, MONTEIRO, et al. Optical doping of AlN by rare earth implantation. Nuclear Instruments and Methods in Physics Research B, 2006, 224(1/2): 307–310.
  • 8LU F, RIZZI A, CARIUS R. Lattice disorder and photoluminescence of Er-implanted AlN crystalline films. Chinese Physcics Letter, 2002, 19(12): 1844–1847.
  • 9DAVYDOV V Y, AVERKIEV N S, GONCHARUK, et al. Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC. Journal of Applied Physics, 1998, 82(10): 5097–5102.
  • 10KUNERT H W , MACHATINE A G J , et al. Phonons in sapphire Al2O3 substrate for ZnO amd GaN. Material Science and Engineering: C, 2007, 27(5-8): 1222–1226.

同被引文献23

  • 1张超,孙聆东,张亚文,严纯华.Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors[J].Journal of Rare Earths,2010,28(6):807-819. 被引量:14
  • 2Ballato J,Lewis J S,Holloway P.Display Applications of Rare-earth-doped Materials[J].Mrs Bulletn,1999,24(9):51-56.
  • 3Yang K,Ichimura M.Fabrication of Cu-Zn-Sn-S-O Thin Films by the Electrochemical Deposition Method and Application to Heterojunction Cells[J].Ieice Technical Report Component Parts&Materials,2014,114(2012):10178-10182.
  • 4Maqbool M,Kordesch M E,Kayani A.Enhanced Cathodoluminescence from an Amorphous Al N∶Holmium Phosphor by Co-doped Gd3+for Optical Devices Applications[J].Journal of the Optical Society of America B-optical Physics,2009,26(5):998-1001.
  • 5Maqbool M,Ahmad I,Richardson H H,et al.Direct Ultraviolet Excitation of an Amorphous Al N∶Praseodymium Phosphor by Co-doped Gd3+Cathodoluminescence[J].Applied Physics Letters,2007,91(19):193511.
  • 6Rodrigues J,Miranda S M C,Santos N F,et al.Rare Earth Co-doping Nitride Layers for Visible Light[J].Materials Chemistry and Physics,2012,134(2-3):716-720.
  • 7Ruterana P,Lacroix B,Lorenz K,et al.A Mechanism for Damage Formation in Ga N During Rare Earth Implantation at Medium Range Energy and Room Temperature[J].Journal of Applied Physics,2011,109(1):013506.
  • 8Wang C M,Jiang W,Weber W J,et al.Defect Clustering in Ga N Irradiated With O+Ions[J].Journal of Materials Research,2002,17(11):2945-2952.
  • 9Leclerc S,Lacroix B,Declemy A,et al.Mechanisms of Damage Formation in Eu-implanted Al N[J].Journal of Applied Physics,2012,112(7):073525.
  • 10Davydov V Y,Averkiev N S,Goncharuk I N,et al.Raman and Photoluminescence Studies of Biaxial Strain in Ga N Epitaxial Layers Grown on6H-Si C[J].Journal of Applied Physics,1998,82(10):5097-5102.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部