期刊文献+

胚胎电子细胞的部分基因循环存储结构 被引量:1

Structure of partial-DNA cyclic memory for embryonics cell
下载PDF
导出
摘要 为了在保证胚胎电子系统可靠性的前提下降低系统的硬件消耗,提出一种新型的基因存储结构——部分基因循环存储,细胞只存储阵列的部分基因,通过细胞内、细胞间的基因循环、非循环移位实现阵列的功能分化和自修复,自修复过程中基因存储内容根据故障细胞数目进行自主更新。该存储结构中基因备份数目可由设计者根据系统可靠性和硬件消耗要求设置,不受阵列中空闲资源数目的限制。理论分析和仿真实验表明,该新型存储结构不仅实现了胚胎电子阵列的功能分化、自修复等功能,而且能够在保证系统可靠性的同时降低硬件消耗,具有较高的工程应用价值。 In order to reduce the hardware cost of embryonics system on the promise of ensuring system reliability,a novel genome memory structure—partial-DNA cyclic memory was presented,and only part of the system 's DNA was stored. The embryonics array 's functional differentiation and self repairing were achieved through the gene cyclic and non-cyclic shift in the cell and between cells,and the genes stored in memory were updated during the self repairing process. In this memory structure,the gene backups were set according to actual demand of system reliability and hardware cost,which were independent from the number of idle resources in embryonics array. Theoretical analysis and simulation results show that the new genome memory structure can not only achieve embryonics array's functional differentiation and self-repair,but also can ensure system reliability and reduce hardware cost,and it has a high practical engineering value.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2016年第1期78-85,共8页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61271153 61372039)
关键词 胚胎电子阵列 基因存储 循环移位 可靠性 自修复 基因更新 embryonics array genome memory cyclic shift reliability self repairing genome update
  • 相关文献

参考文献14

  • 1Kim S, Chu H, Yank I, et al, A hierarchical self-repairing architecture for fast fault recovery of digital systems inspired from paralogous gene regulator circuit[ J ]. IEEE Transactions on Very Large Scale Integration (VLSI) System, 20J2, 20(12) : 2315 -2328.
  • 2YanK I, JunK S H, Cho K H. Self-repairing digital system with unified recovery process inspired by endocrine cellular communication[ J ]. IEEE Transactions on Very Large Scale Integration (VLSI) System, 2013, 21 (6): 1027- 1040.
  • 3Jackson A H, Canham R, Tyrrell A M. Robot faull-tolerance using an embryonic array [ C ] //Proceedings of the NASA/ Dod Conference on Evolvable Hardware, IEEE, Los Alamitos, 2003 : 91 - 100.
  • 4Ortega C, Tyrrell A. Biologically inspired reconfigurable hardware for dependable applications [ C ]//Proceedings of the IEE Colloquium on Hardware Systems for Dependable Applications, IEE, Stevenage, 1997:1-4.
  • 5Ortega-Sanchez C, Mange D, Smith S, et al. Embryonics: a bio-inspired cellular architecture with fanh-tolerant properties [ J ]. Genetic Programming and Evolvable Machines. 2000, 1(3) :187 -215.
  • 6Zhang X, Dragffy G, Pipe A G, et al. Partial-DNA supported artificial-life in an embryonic array [ C ] //Proceedings of the International Conference on Engineering of Recordlgurable Systems and Algorithms, CSREA, Athens, 2004 : 203 - 208.
  • 7Samie M, Farjah E, Dragffy G. Cyclic metamorphic memory for cellular bio-inspired electronic systems [ J ]. Genetic Programming and Evolvable Machines, 2008, 9(3) : 183 - 201.
  • 8Xu Guili Xia Zhenghao Wang Haibin Zhang Zhai Wang Youren.Design of Embryo-electronic Systems Capable of Self-diagnosing and Self-healing and Configuration Control[J].Chinese Journal of Aeronautics,2009,22(6):637-643. 被引量:9
  • 9Samie M, Dragffy G, Popescu A, et al. Prokaryoticbioinspired model for embryonics [ C ]//Proceedings of NASA/ ESA Conference on Adaptive Hardware and System, IEEE, Piseataway, 2009 : 171 - 178.
  • 10Samie M, Dragffy G, Tyrrell A M, et al. Novel bio-inspired approach for fault-tolerant VLSI systems [ J ]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2012, 21 (10) : 1878 - 1891.

二级参考文献36

  • 1郑瑞娟,王慧强.生物启发的容错计算技术研究[J].计算机工程与应用,2006,42(4):30-34. 被引量:2
  • 2林勇,罗文坚,钱海,王煦法.n×n阵列胚胎电子系统应用中的优化设计问题分析[J].中国科学技术大学学报,2007,37(2):171-176. 被引量:9
  • 3Vladimirova T, Wu X F. On-board partial run-time reconfiguration for pico-satellite constellations. Proceedings of the 1 st Conference on Adaptive Hardware and Systems. 2006; 262-269.
  • 4Mange D, Goeke M, Madon D, et al. A new family of coarse-grained field-programmable gate array with self-repair and self-reproducing properties. Proceedings of IEEE ISCAS. 1996; 4: 25-28.
  • 5Zhang X, Dragffy G, Pipe ACt Embryonics a path to artificial life. Artificial Life 2006; 12(3): 313-332.
  • 6Ortega C, Tyrrell A. Design of a basic cell to construct embryonic arrays. IEE Proceedings on Computers and Digital Techniques 1998; 145(3): 242-248.
  • 7Zhang X, Dragffy G, Pipe A G, et al. Artificial innate immune system: an instant defence layer of embryonics. Proceedings of the 3rd International Conference on Artificial Immune Systems. 2004; 302-315.
  • 8Moreno J, Thoma Y, Sanchez E. POEtic: a prototyping platform for bioinspired hardware. Proceedings of the Eighth International Conference on Evolvable Systems: From Biology to Hardware. 2005; 177-187.
  • 9Zhang X, Dragffy C, Pipe A G. Partial-DNA supported artificial-life in an embryonic array. Proceedings of the 2004 International Conference on Engineering of Reconfigurable Systems and Algorithms. 2004; 203-208.
  • 10Samie M, Dragffy G., Farjah E. Bio-inspired cellular systems with cyclic metamorphic memory. Proceedings of the 2006 International Conference on Computer Design and Conference on Computing in Nanotechnology. 2006; 183-201.

共引文献23

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部