期刊文献+

基于LDA的互联网广告点击率预测研究 被引量:13

Research on click-through rate prediction of Internet advertising based on LDA
下载PDF
导出
摘要 广告点击率是互联网广告投放的重要依据,有效地预测广告的点击率,对于提高广告投放的效率有着至关重要的作用。在训练点击率预测模型的过程中,往往面临着广告及用户的数量巨大以及训练数据集稀疏的问题,从而导致点击率预测的准确度下降。针对这些问题提出了一种基于LDA(latent Dirichlet allocation,LDA)的点击率预测算法,即LDA-FMs,该算法对原有训练集进行基于主题的分割,利用分割后的子训练集分别建立不同主题下的点击率预测模型;在此基础上,利用广告属于不同主题的概率,有权重地结合每个预测模型的预测结果,进而计算广告的点击率。实验基于KDD Cup 2012-track2的真实数据集,证明了算法的可行性与有效性。 Advertisement click-through rate is essential for Internet advertising. Therefore,estimating click-through rate precisely makes significant influence in the efficiency of advertising on the Internet. During the training of predicting models,many problems will arise such as the massive scale of advertisements and users,and the sparseness of training set,which usually lead to a low accuracy of the predictive click-through rate. In order to solve these problems,this paper proposed an algorithm named LDA-FMs,which was a kind of predicting click rate algorithm based on LDA. Specifically,LDA-FMs partitioned the original training sets according to different topics,and then built click-through rate prediction models respectively upon different topics using partitioned sub-training sets. On this basis,it calculated the advertisement click-through rate by using the probability of advertisement belonged to different topics and the combined with prediction result of every prediction model. The experiment based on real data sets from KDD Cup 2012-Track2,proves the feasibility and validity of this method.
出处 《计算机应用研究》 CSCD 北大核心 2016年第4期979-982,共4页 Application Research of Computers
基金 国家公益性科研专项基金资助项目(201310162) 连云港科技支撑计划资助项目(SH1110)
关键词 计算广告 点击率 主题模型 因子分解机 computational advertising click-through rate topic model factorization machines
  • 相关文献

参考文献10

  • 1周傲英,周敏奇,宫学庆.计算广告:以数据为核心的Web综合应用[J].计算机学报,2011,34(10):1805-1819. 被引量:59
  • 2Guo Fan, Liu Chao, Kannan A, et al. Click chain model in Web search[C] //Proc of the 18th International World Wide Web Confe-rence. New York:ACM Press, 2009:11-20.
  • 3Srikant R, Basu S, Wang Ni, et al. User browsing models:relevance versus examination[C] //Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2010:223-232.
  • 4Wang Xuerui, Li Wei, Cui Ying, et al. Click-through rate estimation for rare events in online advertising[EB/OL] . (2011-10-27). http://www. cs. cmu. edu/-xuerui/papers/ctr. pdf.
  • 5Gollapudi S, Panigrahy R, Goldszmidt M. Inferring clickthrough rates on Ads from click behavior on search results[C] //Proc of Workshop on User Modeling for Web Applications, the 4th International Conferen-ce on Web Search and Web Data Mining. New York:ACM Press, 2011.
  • 6Shen Si, Hu Botao, Chen Weizhu, et al. Personalized click model through collaborative filtering[C] // Proc of the 5th ACM International Conference on Web Search and Data Mining. New York:ACM Press, 2012:323-332.
  • 7Trofimov I, Kornetova A, Topinskiy V. Using boosted trees for click-through rate prediction for sponsored search[C] //Proc of the 6th International Workshop on Data Mining for Online Advertising and Internet Economy. 2012:1-6.
  • 8Rendle S. Social network and click-through prediction with factorization machines[EB/OL] . (2012-08-08). https://kaggle2. blob. core. windows. net/competitions/kddcup2012/2748/media/Rendle. pdf.
  • 9Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J] . Journal of Machine Learning Research, 2003, 3(4-5):993-1022.
  • 10Rendle S. Factorization machines[C] //Proc of the 10th IEEE International Conference on Data Mining. [S. l.] :IEEE Press, 2010:995-1000.

二级参考文献100

  • 1CR—Nielsen.CRNielsen发布2010年上半年中国互联网广告市场简报.http://www.cr—nielsen.com/wangluo/trend/201007/291758.html,2010.7.
  • 2eMarketer. Online Ad Spend Surpasses Newspapers. http://affiliate program, amazon, com/gp/advertising/api/ detail/main, html. 2010.12.
  • 3David Ogilvy. Ogilvy on Advertising. Vintage, 1985. 12.
  • 4Phillip Nelson. Advertising as information. The Journal of Political Economy, 1974, 82(4): 729 754.
  • 5新浪.新浪微博用户超过1亿,开始进军电子商务市场.http://tech.sina.com.cn/i/2011-03-02/17395237059.shtml.2011.3.
  • 6新浪.Twitter董事长称全球用户数已突破2亿.http://teeh.sina.com.cn/i/2011—01—12/17495087422.shtml,20l1.1.
  • 7eMrketer. Twitter ad revenues to soar this year. http:// wwwl. emarketer, com /Article. aspx?R= 1008192& AspxAutoDetectCookieSupport= 1, 2011.1.
  • 8Regelson M, Fain D. Predicting click through rate using keyword clusters//Proceedings of the 2nd Workshop on Sponsored Search Auctions. 2006.
  • 9Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Metzler D, Riedel L, Yuan J. Online expansion of rare queries for sponsored search//Proceedings of the SIGIR. 2009.
  • 10Radlinski F, Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Riedel L. Optimizing relevance and revenue in ad search: A query substitution approach//Proceedings of the SIGIR. 2008.

共引文献58

同被引文献104

引证文献13

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部