期刊文献+

邻域结构为复杂网络的粒子群算法 被引量:1

PSO algorithm with spatial structure based on complex network
下载PDF
导出
摘要 为避免早熟收敛和局部最优,设计了一种基于复杂网络进行个体交互的粒子群算法(CNS-PSO)。该算法在粒子与网络节点间建立映射关系,并根据节点的邻居集合,获得粒子的动态飞行邻居。每个飞行邻居集合是一个独立又彼此联系的进化小社会。在CNS-PSO中,每个粒子的位置更新策略不仅考虑了认知部分及社会的信息共享,还考虑了小社会内和小社会间的信息交流。在八个测试函数上,将CNS-PSO与标准PSO进行了对比,在不同维度的大多数函数上,前者的性能均优于后者,说明具有无标度网络邻域结构的CNS-PSO算法具有较强的避免早熟和逃逸局部最优的能力。 In order to avoid premature convergence and local optimum,this paper designed a novel method named CNS-PSO.The individuals in this algorithm interacted with each other based on a given complex network. CNS-PSO established the mapping between particles and network nodes,and obtained the particles' flying neighbors dynamically according to their nodes' neighbors on a given complex network. Each set of flight neighbor was an independent but contacted evolutionary small community. In the algorithm,the particle's update strategy for its position taken into account not only the cognitive part and the information sharing of the whole society,but also the information exchange within a small community or between two small ones. To validate CNS-PSO,this work conducted a series of experiments on eight test functions with different dimensions. On most of functions,CNS-PSO is better than standard PSO. The results show that the proposed algorithm with scale-free spatial structure CNS-PSO algorithm has stronger ability to avoid premature and escape from local optimal.
出处 《计算机应用研究》 CSCD 北大核心 2016年第4期1034-1038,1069,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(71271067)
关键词 复杂网络 粒子群算法 函数寻优 进化计算 空间结构 complex network particle swarm optimization algorithm function optimization evolution computing spatial structure
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C] //Proc of IEEE International Conference on Neural Networks. Piscataway:IEEE Press, 1995:1942-1948.
  • 2刘文远,郭香军.多极小值粒子群优化算法[J].小型微型计算机系统,2013,34(2):351-355. 被引量:4
  • 3陈基漓.粒子群算法种群多样性控制方法研究[J].微电子学与计算机,2013,30(6):6-9. 被引量:3
  • 4Payne J L, Giacobini M, Moore J H. Complex and dynamic population structures:synthesis, open questions, and future directions[J] . Soft Computing, 2013, 17(7):1109-1120.
  • 5Bryden K M, Ashlock D A, Corns S, et al. Graph-based evolutionary algorithms[J] . IEEE Trans on Evolutionary Computation, 2006, 10(5):550-567.
  • 6庄健,杨清宇,杜海峰,于德弘.一种高效的复杂系统遗传算法[J].软件学报,2010,21(11):2790-2801. 被引量:41
  • 7Chen Yiying, Zhang Zexing, Li Wenbin. An algorithm constrained by complex network’s structure for solving TSP[C] //Proc of the 3rd International Conference on Intelligent System Design and Engineering Applications. 2013:270-273.
  • 8Zhou Aimin, Qu Boyang, Li Hui, et al. Multiobjective evolutionary algorithms:a survey of the state of the art[J] . Swarm and Evolutionary Computation, 2011, 1(1):32-49.
  • 9Watts D J, Strogatz S H. Collective dynamics of small-world networks[J] . Nature, 1998, 393(6684):440-442.
  • 10Barabasi A L, Albert R. Emergence of scaling in random networks[J] . Science, 1999, 286(5439):509-512.

二级参考文献23

共引文献55

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部