期刊文献+

基于滚动时域的遗传-免疫算法优化航班着陆调度 被引量:7

Genetic-immune algorithm based on receding horizon for aircraft landing scheduling problems
下载PDF
导出
摘要 航班调度问题一直是空中交通管制(ATC)中的一个复杂而具有重要意义的任务,而航班着陆问题(ALS)是其中的核心问题.航班着陆调度是NP-hard问题,具有规模大、约束条件多的特点.因此,为了有效合理地解决航班着陆问题,本文提出了基于滚动时域的遗传-免疫算法(RHC HGIA)的航班着陆调度算法.RHC HGIA主要从两个方面解决航班着陆问题,一方面根据设定的滚动时域长度与大小选择需要进行优化的待降落航班;另一方面对选择的待降落航班使用遗传-免疫算法进行优化并确定其实际着陆时间.经过优化后的航班组成新的航班降落序列,从该序列中选择实际着陆时间在给定时域范围内的航班进行着陆.重新设置滚动时域长度,选择待降落航班进行优化,直到所有待着陆航班都已着陆为止.本文仿真实验以某机场一天内的20架待着陆航班数据为基础,并在机场管制仿真系统中进行模拟仿真.仿真实验表明,与传统航班着陆调度算法(FCFS)相比,经过RHC_HGIA算法优化后的待着陆航班的额外成本有明显的降低. Flight scheduling problem has been a complex and key task for the air traffic control(ATC),and aircraft landing scheduling(ALS)problem is one of the core issues.ALS is a NP-hard problem with a large scale and multi-constraints characteristics.Thus,in order to solve the flight landing problem effectively and rationally,a flight landing scheduling algorithm based on receding horizon and genetic-immune algorithm(RHC_HGIA)is proposed.RHC_HGIA solves the problem of flight landing by two aspects mainly,one is that selecting the flights that are waiting to land and need to be optimized based on the receding horizon length and size which have been set;on the other hand,optimizing The selected flights which are waiting to land by using genetic-immune algorithm and determining actual landing time of them.the flights that have been optimized form a new flight landing sequence,selecting the flights from the sequence that the actual landing time of them in the field within a given time range to land.Then resetting receding horizon length and re-selecting the flights to be optimized until all pending landings have landed so far.In this paper,simulation is conducted in the airport control simulation systemon the base of an airport of 20 flights to be landing of one day.Simulation results show that,RHC_HGIA algorithm can solve ALS problem preferably,and comparing with traditional flights landing scheduling algorithm(FCFS),the extra costs of flight is reduced much more.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期311-318,共8页 Journal of Sichuan University(Natural Science Edition)
基金 国家高技术研究发展计划(863计划)(2013AA013902)
关键词 航班着陆排序 滚动时域 遗传算法 免疫算法 条件约束 Aircraft Landing Scheduling Receding Horizon Control Genetic algorithm Immune Algorithm Constraints
  • 相关文献

参考文献10

  • 1李志荣,张兆宁.基于蚁群算法的航班着陆排序[J].交通运输工程与信息学报,2006,4(2):66-69. 被引量:25
  • 2刘丹,韩松臣,舒旎.多跑道起降航班排序模型和算法研究[J].武汉理工大学学报(信息与管理工程版),2011,33(1):27-31. 被引量:8
  • 3杨秋辉,游志胜,冯子亮,洪玫.一种改进的基于遗传算法的多跑道到达飞机调度[J].四川大学学报(工程科学版),2006,38(2):141-145. 被引量:26
  • 4王来军,史忠科.航班离场排序问题的遗传算法设计[J].系统工程理论与实践,2005,25(9):119-125. 被引量:18
  • 5Beasley J E,Krishnamoorthy M,Sharaiha Y M,et al.Scheduling aircraft landings-the static case[J].Trans Sci,2000,34(2):180.
  • 6Hu X B,Chen W H.Genetic algorithm based on re- ceding horizon control for arrival sequencing and scheduling [J].Eng Appl Artif Intel,2005,18(5):633.
  • 7Yu S P,Cao X B,Zhang J.A real-time schedule method for aircraft landing scheduling problem based on cellular automation [J].ASC,2011,11(4):3485.
  • 8John E.Fuzzy reasoning based sequencing of arrival aircraft in the terminal area /Proceedings of Al A A Guidance,Navigation and Control Conference.New Orleas,LA:American Institute of Aeronautics and Astronautics,Inc.,1997.
  • 9Jiao L C,Wang L.A Novel Genetic Algorithm Based on Immunity[J].IEEE SMC,2009,30(5):552.
  • 10Chun J S,Kim M K,Jung H K.Shape optimization of electromagnetic devices using immune algorithm [J]_ IEEE Trans on Mag,1997,33(2):1876.

二级参考文献29

  • 1张兆宁,王莉莉.基于流量和滑动窗的空中交通管理动态排序算法[J].交通运输工程与信息学报,2004,2(3):22-25. 被引量:20
  • 2杨秋辉,游志胜,洪玫.基于单机排序问题的降落飞机分组排序方法[J].四川大学学报(工程科学版),2004,36(6):106-110. 被引量:12
  • 3江波,张飞桥.基于最早预达时刻的进近排序模型及算法[J].西南交通大学学报,2005,40(4):509-512. 被引量:11
  • 4VRANAS P, BERTSIMAS D, ODOMI A R. The muhi -airport ground - holding problem in air traffic control [J]. Operation Research, 1994,42 ( 2 ) : 249 - 261.
  • 5DEAR R D. The dynamic scheduling of aircraft in the near terminal area[M]. Cambridge : MIT Press, 1976 : 12 -98.
  • 6PSARAFTIS H N. Dynamic programming approach for sequencing group of identified jobs [J].Operations Research,1980,28 (6) : 1347 - 1359.
  • 7SALVATORE C ,MATTEO I. Genetic algorithms for sol- ving the aircraft - sequencing problem : the introduction of departures into the dynamic model[ J]. Journal of Air Transport Management,2004,10 ( 5 ) : 345 - 351.
  • 8ADITYA P S, GARY L S. Optimal dynamic scheduling of aircraft arrivals at congested airports [ J ]. Journal of Guidance, Control and Dynamics, 2008,31 ( 1 ) : 53 - 65.
  • 9COLOMI A ,DORIGO M, MANIEZZO V. Distribute optimization by ant colonies[ C]//Proceeding of First European Conference on Artificial Life. Paris : Elsevier, 1991 : 134 - 142.
  • 10ERZBERGER H,TOBIAS L. A time - based concept for terminal - area traffic management [ R ]. [ S. l. ] : NASA, 1986.

共引文献68

同被引文献43

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部