期刊文献+

双值噪声与方波作用下半导体层杂质扩散诱导的随机共振 被引量:1

Stochastic resonance of impurities diffusion induced by dichotomous noise and square-wave signal in a semiconductor layer
下载PDF
导出
摘要 研究了由双值噪声和方波作用下半导体层杂质扩散诱导的随机共振现象.基于绝热近似条件,利用两态理论,得到了系统输出信噪比(SNR)的表达式.发现环境温度对SNR影响是非单调的.分析表明,SNR是杂质位置的标准差和系统偏置的非单调函数:通过选择标准差和偏置可以调节系统输出SNR,当温度较低时,较大的偏置可以提高SNR.同时,在较高的温度时,SNR随方波信号的幅度及热池与冷池温度间的比例增大而增大,而随势能量及双值噪声强度的增大而减小.本文实验结果表明,对于半导体的设计以及半导体层杂质扩散过程的研究有一定的理论意义. The stochastic resonance(SR)in a semiconductor layer driven by a dichotomous noise and square-wave signal is investigated.On the assumption that the system satisfies the adiabatic approximation condition,applying the two-state theory,the expression for the output signal-to-noise ratio(SNR)of the system is obtained.The non-monotonic influence of the surrounding temperature on the SNR is found.It is shown that the SNR is a non-monotonic function of the standard deviation of the impurities' position and the system bias:By choosing the deviation and bias of the impurity,the system SNR can be tuned.For low temperature,large bias can improve the system SNR.Moreover,the SNR increases with the amplitude of the square-wave signal and the ratio between temperature of the hot and cold reservoirs for relatively high temperature,while the SNR decrease with the increase of potential energy and the strength of the dichotomous noise.The results obtained in this paper have certain theoretical significance for the semiconductor design and the investigation of the semiconductor layer process.
作者 欧剑
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期331-336,共6页 Journal of Sichuan University(Natural Science Edition)
基金 四川省教育厅2013年度科研项目重点项目(13ZA0326)
关键词 随机共振 杂质扩散 双值噪声 方波 信噪比 Stochastic resonance Impurities diffusion Dichotomous noise Square-wave signal Signal-to-noise ratio
  • 相关文献

参考文献3

二级参考文献57

  • 1王会琦,马洪.基于最优分数阶傅里叶变换MIMO-OFDM系统[J].四川大学学报(工程科学版),2009,41(6):231-236. 被引量:2
  • 2Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453.
  • 3Berdichevsky V and Gitterman M 1999 Phys. Rev. E 60 1494.
  • 4Mantegna R N, Spagnolo B and Trapanese M 2001 Phys. Rev. E 63 011101.
  • 5McNamara B, Wiesenfeld K and Rajarshi Roy 1988 Phys. Rev. Lett. 60 2626.
  • 6Stocks N G 2000 Phys. Rev. Lett. 84 2310.
  • 7Valenti D, Fiasconaro A and Spagnolo B 2004 Physica A 331 477.
  • 8Duan F and Xu B 2003 Int. Y. Bifur. Chaos 13 411.
  • 9Zhang L Y, Jin G X and Cao L 2011 Acta Phys. Sin. 60 044207.
  • 10Liu S J, Wang Q, Liu B, Yan S W and Fumihiko S 2011 Acta Phys. Sin. 60 128703.

共引文献6

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部