期刊文献+

VCAM-1靶向双模态光声/超声纳米级分子探针的制备及其体外寻靶实验 被引量:7

Preparation of VCAM-1 receptor-targeted dual-modal photoacoustic/ultrasound nanoscale molecular probe with gold nanorods and liquid fluorocarbon and their targeted ability in vitro
下载PDF
导出
摘要 目的制备一种靶向炎症内皮细胞的双模态纳米级分子探针,并对其进行体外寻靶研究。方法采用双乳化法制备包裹金纳米棒(Gold nanorods)-液态氟碳全氟己烷(PFH)的高分子聚合物纳米粒(GNPs)、只包裹PFH的纳米粒(NPs)和只包裹金纳米棒的纳米粒(Au-NPs);采用碳二亚胺法制备靶向血管内皮粘附因子(VCAM-1)靶向连接的纳米粒(VCAM-1-GNPs);于光镜、电镜下对GNPs基本性质进行检测;用激光辐照仪进行辐照观察GNPs、NPs和Au-NPs的光致相变情况;采用光镜和流式细胞仪观察GNPs与靶向抗体连接情况;用不同浓度肿瘤坏死因子(TNF-α)作用于人脐静脉内皮细胞(HUVECs)后,采用蛋白质印迹法(Western Blot)测量HUVECs膜上VCAM-1的表达量;观察靶向组和非靶向组与VCAM-1-GNPs的结合情况。结果成功制备包裹金纳米棒-液态氟碳双模态靶向纳米粒,平均粒径(463.67±8.23)nm;激光辐照GNPs相变明显,而NPs和Au-NPs未见明显相变;流式仪检测GNPs和VCAM-1抗体的连接率为99.87%;10ng/ml浓度的TNF-α作用于细胞后可见VCAM-1明显表达;光镜下VCAM-1-GNPs特异性与靶向组HUVECs结合,非靶向组则未见明显结合。结论成功制备包裹金纳米棒-液态氟碳双模态靶向纳米粒,GNPs光致相变效果明显,靶向性好。 Objective To prepare vascular cell adhesion molecule-1(VCAM-1)-targeted polymer ultrasound/photoacoustic dual-modality photoacoustic/ultrasound nanoscale molecular probe enfloding gold nanorods and liquid perflurocarbon,and explore their targeting ability in vitro.Methods The polymer PLGA nanoparticles(GNPs)loaded gold nanorods and liquid perflurocarbon(Perfluorohexane,PFH),only PFH nanoparticles(NPs)and only gold nanorods(Au-NPs)were synthesized by double emulsion and the VCAM-1-GNPs were accomplished via carbodiimide method.The basic physical characteristics of GNPs were observed with light microscope and electron microscopy.The optical droplet vaporization(ODV)of GNPs,NPs and Au-NPs were motivated by laser apparatus and observed by light micriscope.The HUVECs was simulated by different concentration of TNF-αand the product-VCAM-1was detected by Western Blot.The coupling efficiency and imaging of GNPs with VCAM-1 were detected.The targeted GNPs and none targeted GNPs with HUVECs were observed.Results The GNPs were synthesized successfully,and the average diameter was(463.67±8.23)nm.The GNPs could be motivated by laser and the ODV imaging was observed obviously,while NPs and Au-NPs were not clear.The coupling efficiency of GNPs with VCAM-1was 99.87%.The VCAM-1expressed on HUVECs markedly via the effect of TNF-α(10ng/ml).The VCAM-1-GNPs with HUVECs in the targeted group had excellent connection while none-targeted had poor.Conclusion The polymer nanoparticles coated gold nanorods and perflurocarbon is prepared.The ODV is obvious.The targeted GNPs has excellent coupling efficiency with HUVECs in vitro.
出处 《中国医学影像技术》 CSCD 北大核心 2016年第3期333-337,共5页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金(81471713)
关键词 金纳米棒 液气相变 VCAM-1抗体 光声成像 Gold nanorods Liquid-gas phase transition VCAM-1antibody Photoacoustic imaging
  • 相关文献

参考文献14

  • 1Huang P, Rong P, Jin A, et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv Mater, 2014,26(37) : 6401-6408.
  • 2Wang Y, Song D, Costanza F, et al. Targeted delivery of tanshi- none IIA-conjugated mPEG-PLGA-PLL-cRGD nanoparticles to hepatocellular carcinoma. J Biomed Nanotechnol, 2014, 10 (11) : 3244-3252.
  • 3Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered Gold nanostructures. Nanoscale, 2014, 6 ( 5 ): 2502-2530.
  • 4肖洋,冉海涛,夏琼,张斌,过源,王志刚.靶向VEGFR2光声/超声双模态造影剂的制备及体外寻靶实验研究[J].中国介入影像与治疗学,2015,12(9):554-558. 被引量:6
  • 5肖洋,冉海涛,夏琼,简嘉,张斌,王志刚.载印度墨水相变型光声/超声双模态造影剂的制备及体外显影[J].中国医学影像技术,2016,32(1):8-12. 被引量:1
  • 6Xu G, Rajian JR, Girish G, et al. Photoacoustic and ultrasound dual-modality imaging of human peripheral joints. J Biomed Opt, 2013,18(1) :10502.
  • 7Lin J, Wang S, Huang P, et al. Photosensitizer-loaded Gold ves- icles with strong plasmonie coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano, 2013, 7 (6) : 5320-5329.
  • 8Peng J, Zhao L, Zhu X, et al. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials, 2013, 34 (32) :7905-7912.
  • 9Pekkanen AM, Dewitt MR, Rylander MN. Nanoparticle en- hanced optical imaging and phototherapy of cancer. J Biomed Nanotechnol, 2014,10(9) : 1677-1712.
  • 10Wang YH, Chen SP, Liao AH, et ai. Synergistic delivery of Gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy. Sci Rep, 2014,4 : 5685.

二级参考文献41

  • 1Kaneda MM, Caruthers S, Lanza GM, et al. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng, 2009,37(10):1922-1933.
  • 2Kornmann LM, Curls I)M, Hermeling E, et al. Perfluorohexane- loaded macrophages as a novel ultrasound contrast agent : A feasi- bility study. Mol Imaging Biol, 2008, 10(5):264 270.
  • 3Saha P, Modarai B, Humphries J, et al. The monocyte/macro- phage as a therapeutic target in atherosclerosis. Curr Opin Phar- macol, 2009,9(2) : 109-118.
  • 4Schad KC, Hynynen K: In vitro characterization of perfluorocar- bon droplets for focused ultrasound therapy. P hys Med Biol, 2010,55(17) :4933-4947.
  • 5Diaz-L6pez R, Tsapis N, Fattal E. Liquid perf|uorocarbons as contrast agents for ultrasonography and (19) F-MRI. Pharm Res, 2010,27(1):1-16.
  • 6Ragde H, Kenny GM, Murphy GP, et al. Transrectal ultrasound microbubble contrast angiography of the prostate. Prostate,1997,32 (4) : 279-283.
  • 7Rapoport NY, Efros AL, Christensen DA, et al. Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers. Bubble Sci Eng Technol, 2009,1(1-2):31 39.
  • 8Pisani E, Tsapis N, Paris J, et al. Polymeric'nano/microcap- sules of liquid perfluorocarbons for ultrasonic imaging: Physical characterization. Langmuir, 2006,22(9) :4397-4402.
  • 9Kripfgans OD, Fowlkes JB, Miller DL, et al. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultra- sound Med Biol, 2000,26(7) : 1177-1189.
  • 10Rapoport NY, Kennedy AM, Shea JE, et al. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemul- sions/microbubbles. I Control Release. 2009. 138(3) :268-276.

共引文献13

同被引文献33

  • 1Sun J, Yin M. Zhu S, et al. Ultrasound-mediated destruction of Oxygen and paelitaxel loaded lipid mierobubbles for combination therapy in hypoxic ovarian cancer cells. Ultrason Sonoehem, 2016,28:319-326.
  • 2Zhang X, Zheng Y, Wang Z, et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted ther- apy of residual tumor during HIFU ablation. Biomaterials, 2014, 35(19) :5148-5161.
  • 3Cole JT, Holland NB. Multifunetional nanopartieles for use in theranostie applications. Drug Deliv Transl Res, 2015,5 (3) :295- 309.
  • 4Mallidi S, Spring BQ, Chang S, et al. Optical imaging, photody- namie therapy and optically triggered combination treatments. Cancer J, 2015,21(3) :194-205.
  • 5Zhao Y, Song W, Wang D, et al, Phase-Shifted PFH@PLGA/ Fe304 nanoeapsules for MRI/US imaging and photothermal lher- apy with near-Infrared irradiation. ACS Appl Mater Interfaces, 2015,7(26) :14231-14242.
  • 6Zhou Y, Wang Z, Chen Y. et al. Microbubbles from gas-genera- ting perfluorohexane nanoemulsions for targeted temperature-sen- sitive ultrasonography and synergistic HIFU ablation of tumors.Adv Mater, 2013,25 (30) : 4123-4130.
  • 7Smith BA, Gammon ST, Xiao S, et al. In vivo optical imaging of acute cell death using a near infrared fluorescent zinc-dipicolyl- amine probe. Mol Pharm, 2011, 8(2):583-590.
  • 8Zheng X, Xing D, Zhou F, et al. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Mol Pharm, 2011,8 (2) :447-456.
  • 9Sheng Z, Hu D, Zheng M, et al. Smart human serum albumin- indocyanine green nanoparticles generated by programmed assem- bly for dual-modal imaging-guided cancer synergistic photothera- py. ACS Nano, 2014,8(12) :12310-12322.
  • 10Hannah A, Luke G, Wilson K, et at. Indocyanine Green-Load- ed photoacoustie nanodroplets: Dual contrast nanoconstructs for enhanced photoacoustie and ultrasound imaging. ACS Nano, 2014,8(1) : 250-259.

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部