期刊文献+

基于LDA和CTR的用户模型分析 被引量:1

Analysis of user model based on LDA and CTR
下载PDF
导出
摘要 个性化服务一直是研究的热点,但是如何构建完整的用户模型是一个颇有挑战性的问题。将基于主体模型LDA对用户模型进行预测,在用户和推荐项目的特征向量上采用CTR进行约束,使结果更为准确。在只需要少量人为因素下,由机器来训练最初的主题模型,在训练模型的基础上,通过选取100名用户的微博作为测试,用等级打分制来对推荐的项目进行打分,最终的结果显示,在新闻推荐上,微观满意度达到82.5%;而在名人推荐上,微观满意度达到了84.3%,综合以上,推荐服务的满意度还是令人满意的。 Personal service is a hot topic. But how to construct an integrated user model remains a challenge for us. This paper makes use of the topic model LDA to infer the user model. In order to improve precision, CTR is put into use for restrict of feature vector. With a few manual factors, the machine generates a training topic model. Based on this model,100 users' micro-log messages regarded as test data will be applied for evaluating the quality of recommendation. The results show that the recommendation of celebrity performs better than the recommendation of news. Generally speaking,personal service is satisfying.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第6期50-54,共5页 Computer Engineering and Applications
基金 国家自然科学基金重点项目(No.61133012) 国家自然科学基金面上项目(No.61173062)
关键词 隐形狄雷克雷分布(LDA) 主题模型 基于主题模型的协同过滤(CTR) 用户模型 推荐 Latent Dirichlet Allocation(LDA) topic model Collaborative Topic Regression(CTR) user model recommendation
  • 相关文献

参考文献15

  • 1宋巍,张宇,谢毓彬,刘挺,李生,都云程.基于微博分类的用户兴趣识别[J].智能计算机与应用,2013,3(4):80-83. 被引量:12
  • 2Cha M,Haddadi H,Benevenuto F,et al.Measuring user influence in Twitter:the million follower fallacy[C]//ICWSM,2010:10-17.
  • 3Weng J,Lim E P,Jiang J,et al.Twitter rank:finding topicsensitive influential winterers[C]//Davison B D,Suel T,Craswell N,eds.Proceedings of the Third International Conference on Web Search and Web Data Mining(WSDM),New York,NY,USA,2010:261-270.
  • 4Kwak H,Lee C,Park H,et al.What is twitter,a social network or a news media?[C]//Proceedings of the 19th International Conference on World Wide Web(WWW),2010:591-600.
  • 5Lerman K,Ghosh R.Information contagion:an empirical study of the spread of news on digg and twitter social networks[C]//Proceedings of 4th International Conference on Weblogs and Social Media(Media ICWSM),2010.
  • 6Zhao W X,Jiang J,Weng J,et al.Comparing twitter and traditional media using topic models[M]//Advances in Information Retrieval.Berlin Heidelberg:Springer,2011:338-349.
  • 7Hong L,Davison B D.Empirical study of topic modeling in Twitter[C]//Proceedings of the SIGKDD Workshop on SMA,2010.
  • 8Ramage D,Dumais S,Liebling D.Characterizing microblogs with topic models[C]//International Conference on Weblogs and Social Media,2010.
  • 9Abel F,Gao Qi,Jang.Semantic enrichment of Twitter posts for user profile construction on the social Web[C]//Weblogs and Social Media,ICWSM,2010.
  • 10Abel F,Gao Qi,Jang.TUMS:Twitter-based user modeling service[C]//ESWC,2011.

二级参考文献24

  • 1欧健文,董守斌,蔡斌.模板化网页主题信息的提取方法[J].清华大学学报(自然科学版),2005,45(S1):1743-1747. 被引量:70
  • 2张志刚,陈静,李晓明.一种HTML网页净化方法[J].情报学报,2004,23(4):387-393. 被引量:57
  • 3Gibson D,Punera K,Tomkins A.The Volume and Evolution of Web Page Templates[C]//Proc.of the 14th International Conference on World Wide Web.New York,USA:ACM Press,2005.
  • 4Rahman A,Alam H,Hartono R.Content Extraction from HTML Documents[C]//Proc.of the 1st International Workshop on Web Document Analysis.New York,USA:ACM Press,2001.
  • 5Wang Jiying,Lochovsky F H.Data-rich Section Extraction from HTML Pages[C]//Proc.of the 3rd International Conference on Web Information Systems Engineering.Washington D.C.,USA:IEEE Computer Society,2002.
  • 6Sun Fei,Song Dandan,Liao Lejian.Dom Based Content Extraction via Text Density[C]//Proc.of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2011.
  • 7Weninger T,Hsu W H,Han J.CETR:Content Extraction via Tag Ratios[C]//Proc.of the 19th International Conference on World Wide Web.New York,USA:ACM Press,2010.
  • 8Abdul P,Qureshi R,Memon N.Hybrid Model of Content Extraction[J].Journal of Computer and System Sciences,2012,78(4):1248-1257.
  • 9Cai Deng,Yu Shipeng,Wen Jirong,et al.VIPS:A Vision Based Page Segmentation Algorithm[EB/OL].(2003-10-20).http://research.microsoft.com/apps/pubs/default.aspx?id=70027.
  • 10Song Mingqiu,WU Xintao.Content Extraction from Web Pages Based on Chinese Punctuation Number[C]//Proc.of International Conference on Wireless Communications,Networking and Mobile Computing.[S.1.]:IEEE Press,2007.

共引文献26

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部