期刊文献+

基于SVM主动学习的音乐分类 被引量:8

Music classification based on SVM active learning
下载PDF
导出
摘要 提出了一种改进的SVM(支持向量机)主动学习方法,通过多次迭代提供给用户信息量最大的样本并将其加入训练集,可以大大减少人工标记样本所耗费的代价。为了评估分类器的性能,实验中对包含了五种音乐流派类别(舞曲、抒情、爵士、民乐、摇滚)的801首音乐样本进行了分类,并在分类准确率的收敛速度和达到同等准确率下需要标注的样本数目两个方面验证了提出的SVM主动学习方法的有效性。 An improved SVM(Support Vector Machine)active learning method is proposed. By providing the user with the most informative samples which are put into training set through several iterations, the cost of manually labelled samples can be greatly reduced. In the experiment, to evaluate the performance of the classifier, it classifies 801 songs according to five kinds of genres(including dance, lyric, jazz, folk, rock), and verifies the effectiveness of SVM active learning in two aspects which are the accuracy convergence rate and the number of samples need to be labelled to achieve the same accuracy.
作者 邵曦 姚磊
出处 《计算机工程与应用》 CSCD 北大核心 2016年第6期127-133,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.60902065)
关键词 支持向量机 主动学习 音乐分类 Support Vector Machine(SVM) active learning music classification
  • 相关文献

参考文献15

  • 1Wei Dachuan.An improved feature extraction algorithm of humming music[C]//2011 International Conference on Mechanical,and Electrical Engineering,2011:2500-2503.
  • 2Foucard R,Essid S,Richard G,et al.Exploring new features for music classification[C]//2013 14th International Workshop on Image Analysis for Multimedia Interactive Services,2013:1-4.
  • 3Bhat A S,Amith V S,Prasad N S,et al.An efficient classification algorithm for music mood detection in western and hindi music using audio feature extraction[C]//IEEE2014 Fifth International Conference on Signal and Image Processing(ICSIP),2014:359-364.
  • 4Gonzalez-Abril L,Angulo C,Velasco F,et al.A note on the bias in SVMs for multiclassification[J].IEEE Transactions on Neural Networks,2008,19(4):723-725.
  • 5Simon H A,Lea G.Problem solving and rule education:a unified view knowledge and organization[J].Knowledge and Cognition,1974,15(2):63-73.
  • 6Vlachos A.Active learning with support vector machines[D].School of Informatics,University of Edinburgh,2004.
  • 7Seung H S,Opper M,Sompolinsky H.Query by committee[C]//Proceedings of the 15th Annual ACM Workshop on Computational Learning Theory,California,1992:287-294.
  • 8David D,Willam L,Gale A.A sequential algorithm for training text classifiers(uncertainty sampling)[C]//Proceedings of Seventeenth Annual International ACM-SIGIR Conference on Research and Develepment in Information Retrieval,1994:3-12.
  • 9Tong S.Active learning:theory and application[R].Stanford University,2001:1-168.
  • 10Tong S,Koller D.Support vector machine active learning with applications to text classification[J].Journal of Machine Learning Research,2002,2:45-66.

二级参考文献14

  • 1M Seeger, Learning with labeled and unlabeled data [R]. Edinburgh University, Tech Rep, 2001.
  • 2D D Lewis, W A Gale. A sequential algorithm for training text classifiers [C]. In: Proc of the 17th ACM Int'l Conf on Research and Development in Information Retrieval. Berlin: Springer, 1994.
  • 3H S Seung, M Opper, H Sompolinsky. Query by committee [C]. The 5th Workshop on Computational Learning Theory, San Mateo, CA, 1992.
  • 4H T Nguyen, A Smeulders. Active learning using pre-clustering [C]. The 21th Int'l Conf on Machine Learning, Banff, CA, 2004.
  • 5S Tong, D Koller. Support vector machine active learning with applications to text classification [J]. Journal of Machine Learning Research, 2001, 2:45-66.
  • 6G Schohn, D Cohn. Leas is more: Active learning with support vector machines [C]. In: Proc of the 17th Int'l Conf on Machine Learning. San Francisco: Morgan Kaufmann, 2000.
  • 7C Campbell, N Cristianini, A Smola. Query learning with large margin classifiers [C]. In: Proc of the 17th lnt'l Conf on Machine Learning. San Francisco: Morgan Kaufmann, 2000.
  • 8D A Cohn, Z Ghahramani, M I Jordan. Active learning with statistical models [J ]. Journal of Artificial Intelligence research, 1996, 4:129-145.
  • 9N Roy, A McCallum. Toward optimal active learning through sampling estimation of error [C]. The 18th Int'l Conf on Machine Learning, San Francisco, CA, 2001.
  • 10Y Freund, H S Seung, E Shamir, et al. Selective sampling using the query by committee algorithm [J]. Machine Learning, 1997, 28(2-3) : 133-168.

共引文献15

同被引文献86

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部